The categories of lattice-valued maps, equalities, free objects, and $\mathcal C$-reticulation | ||
Categories and General Algebraic Structures with Applications | ||
مقاله 7، دوره 11، Special Issue Dedicated to Prof. George A. Grätzer، مهر 2019، صفحه 93-112 اصل مقاله (670.29 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.29252/cgasa.11.1.93 | ||
نویسنده | ||
Abolghasem Karimi Feizabadi | ||
Department of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan, Iran. | ||
چکیده | ||
In this paper, we study the concept of $\mathcal C$-reticulation for the category $\mathcal C$ whose objects are lattice-valued maps. The relation between the free objects in $\mathcal C$ and the $\mathcal C$-reticulation of rings and modules is discussed. Also, a method to construct $\mathcal C$-reticulation is presented, in the case where $\mathcal C$ is equational. Some relations between the concepts reticulation and satisfying equalities and inequalities are studied. | ||
کلیدواژهها | ||
Free object؛ $ell$-ring؛ $ell$-module؛ frame؛ cozero map؛ semi-cozero map؛ the $F$-Zariski topology؛ $mathcal C$-reticulation؛ lattice-valued map | ||
مراجع | ||
[1] Banaschewski, B., Pointfree topology and the spectra of f-rings, Ordered algebraic structures (Curacoa, 1995), Kluwer Acad. Publ. (1997), 123-148. [2] Banaschewski, B., "The real numbers in pointfree topology", Texts in Mathematics (Series B) 12, University of Coimbra, 1997. [3] Banaschewski, B. and Gilmour, C., Pseudocompactness and the cozero part of a frame, Commentat. Math. Univ. Carol. 37(3) (1996), 577-587. [4] Banaschewski, B. and Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Struct. 9(4) (2001), 395-417. [5] Banaschewski, B. and Gilmour,C., Cozero bases of frames, J. Pure Appl. Algebra 157(1) (2001), 1-22. [6] Brumfiel, G.W., "Partially Ordered Rings and Semi-Algebraic Geometry", London Math. Soc. Lecture Note Ser. 37, Cambridge University Press, 1979. [7] Burris, S. and Sankappanavar, H.P., "A Course in Universal Algebra", Springer-Verlag, 1981. [8] Gillman, L. and Jerison, M., "Rings of Continuous Functions", Springer-Verlag, 1979. [9] Karimi Feizabadi, A., Representation of slim algebraic regular Cozero maps, Quaest. Math. 29 (2006), 383-394. [10] Karimi Feizabadi, A. and Ebrahimi, M.M., Spectra of `-Modules, J. Pure Appl. Algebra 208 (2007), 53-60. [11] Karimi Feizabadi, A. and Ebrahimi, M.M., Pointfree prime representation of real Riesz maps, Algebra Universalis 54 (2005), 291-299. [12] Karimi Feizabadi, A. and Ebrahimi M.M., Pointfree version of Kakutani duality, Order 22 (2005), 241-256. [13] Keimel, K., Représentation d'anneaux reticulés dans les faisceaux, C. R. Acad. Sci. Paris 266, 1968. [14] Keimel K., The representation of lattice-ordered groups and rings by sections in sheaves, Lectures on the Applications of Sheaves to Ring Theory, Lecture Notes in Math. 248 (1971), 1-98. [15] Kennison, J.F., Integral domain type representations in sheaves and other topoi, Math. Z. 151 (1976), 35-56. [16] Johnstone, P.T., "Stone Spaces", Cambridge University Press, 1982. [17] Joyal, A., Les théoremes de Chevally-Tarski et remarques sur l'algebre constructive, Cah. Topol. Géom. Différ. Catég. 16, 256-258. [18] MacLane, S., "Categories for the Working Mathematicians", Graduate Texts in Mathematics 5, Springer-Verlag, 1971. [19] Matutu P., The cozero part of a biframe, Kyungpook Math. J. 42(2) (2002), 285-295. [20] Mulvey, C.J., Representations of rings and modules, Applications of sheaves, Lecture Notes in Math. 753 (1979), 542-585. [21] Mulvey, C.J., A generalization of Gelfand duality, J. Algebra 56 (1979), 499-505. [22] Simmons, H., Reticulated rings, J. Algebra 66 (1980), 169-192. | ||
آمار تعداد مشاهده مقاله: 475 تعداد دریافت فایل اصل مقاله: 465 |