A pointfree version of remainder preservation

, , ,

Abstract


Abstract. Recall that a continuous function f : X ! Y between Tychono
spaces is proper if and only if the Stone extension f : X ! Y
takes remainder to remainder, in the sense that f[X

Keywords


frame, remainder preservation, Stone-Cech compactication, regular Lindelof core- ection, realcompact core ection, proper map, lax proper map. Subject Classication[2000]: 06D22.

Full Text:

PDF

References


R.N. Ball and J. Walters-Wayland, C- and C-quotients in pointfree topology,

Dissertationes Mathematicae (Rozprawy Mat.), Vol. 412, (2002), 62pp.

Banaschewski, B.: The real numbers in pointfree topology. Textos de Matematica

Serie B, No. 12, Departamento de Matematica da Universidade de Coimbra,

(1997).

Themba Dube and Inderasan Naidoo

B. Banaschewski and C. Gilmour, Pseudocompactness and the cozero part of a

frame, Comment. Math. Univ. Carolinae 37(3) (1996), 577 - 587.

B. Banaschewski and C. Gilmour, Realcompactness and the cozero part of a

frame, Appl. Categor. Struct. 9 (2001), 395 - 417.

B. Banaschewski and C. Mulvey, Stone- Cech compactication of locales. I, Houston

J. Math. 6 (1980), 301 - 312.

X. Chen, Stably closed frame homomorphisms, Cah. de Top. Geom. Di. Cat.

(2) (1996), 123 - 144.

T. Dube, Some characterizations of F-frames, Algebra Universalis 62(2009), 273

- 288.

T. Dube, Some ring-theoretic properties of almost P-frames, Algebra Universalis

(2009), 145 - 162.

T. Dube and I. Naidoo, On openness and surjectivity of lifted frame homomorphisms,

Top. and its Appl. 157 (2010), 2159 - 2171.

T. Dube and I. Naidoo, Erratum to [9], Top. Appl. 158 (2011), 2257-2259.

R. Engelking, General Topology, Sigma Series in Pure Math., Berlin, 1989.

J. Gutierrez Garcia, T. Kubiak and J. Picado, Localic real-valued functions: A

general setting, J. Pure Appl. Algebra 213 (2009), 1064 - 1074.

W. He and M. Luo, A note on proper maps of locales, Appl. Categor. Struct.

(DOI 10.1007/s10485-009-9196-1).

P.T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.

M. Korostenski and C.C.A. Labuschagne, Lax proper maps of locales, J. Pure

Appl. Algebra 208 (2007), 655 - 664.

J.J. Madden, -frames, J. Pure Appl. Algebra 70(1991), 107 - 127.

J. Madden and J. Vermeer J, Lindelof locales and realcompactness, Math. Proc.

Camb. Phil. Soc. 99(1986), 473 - 480.

N. Marcus, Realcompactication of frames, Comment. Math. Univ. Carolinae,

(2)(1995), 349 - 358.

J. Picado, A. Pultr and A. Tozzi, Locales In: Categorical foundations, 49{101,

Encyclopedia Math. Appl., 97, Cambridge Univ. Press, Cambridge, 2004.

J.J.C. Vermeulen, Proper maps of locales, J. Pure Appl. Algebra 92(1994), 79 -

Themba Dube, Department of Mathematical Sciences, University of South Africa, P.O.

Box 392, 0003 Unisa, South Africa.

Email: dubeta@unisa.ac.za

Inderasan Naidoo, Department of Mathematical Sciences, University of South Africa,

P.O. Box 392, 0003 Unisa, South Africa.

Email: naidoi@unisa.ac.za


Refbacks

  • There are currently no refbacks.