Simplicial structures over the 3-sphere and generalized higher order Hochschild homology | ||
Categories and General Algebraic Structures with Applications | ||
مقاله 5، دوره 15، شماره 1، مهر 2021، صفحه 93-143 اصل مقاله (937.99 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.52547/cgasa.15.1.93 | ||
نویسندگان | ||
Samuel Carolus1؛ Jacob Laubacher2 | ||
1Department of Mathematics, Ohio Northern University, Ohio, United States of America | ||
2Department of Mathematics, St. Norbert College, Wisconsin, United States of America | ||
چکیده | ||
In this paper, we investigate the simplicial structure of a chain complex associated to the higher order Hochschild homology over the $3$-sphere. We also introduce the tertiary Hochschild homology corresponding to a quintuple $(A,B,C,\varepsilon,\theta)$, which becomes natural after we organize the elements in a convenient manner. We establish these results by way of a bar-like resolution in the context of simplicial modules. Finally, we generalize the higher order Hochschild homology over a trio of simplicial sets, which also grants natural geometric realizations. | ||
کلیدواژهها | ||
Higher order Hochschild homology؛ pre-simplicial algebras؛ deformations | ||
مراجع | ||
[1] Anderson, D.W., Chain functors and homology theories, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), pages 1-12. Lecture Notes in Math. 249, 1971. [2] Carolus, S., Properties of higher order Hochschild cohomology, OhioLINK Electronic Theses and Dissertations Center, Columbus, Ohio, 2019. Dissertation (Ph.D.)– Bowling Green State University. [3] Carolus, S., Hokamp, S.A. and Laubacher, J., Deformation theories controlled by Hochschild cohomologies, to appear in São Paulo J. Math. Sci., 14 (2020), 481-495. [4] Carolus, S., Laubacher, J., and Staic, M.D., A simplicial construction for noncommutative settings, to appear in Homology Homotopy Appl., 23(1) (2021), 49-60. [5] Carolus S. and Staic, M.D., G-algebra structure on the higher order Hochschild cohomology H S2 (A;A), to appear in Algebra Colloq. arXiv:1804.05096, 2020. [6] Cohen, R.L., Hess, K., and Voronov, A.A., String topology and cyclic homology. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2006. Lectures from the Summer School held in Almería, September 16-20, 2003. [7] Corrigan-Salter, B.R. Coefficients for higher order Hochschild cohomology, Homology Homotopy Appl. 17(1) (2015), 111-120. [8] Corrigan-Salter, B.R. Higher order Hochschild (co)homology of noncommutative algebras, Bull. Belg. Math. Soc. Simon Stevin 25(5) (2018), 741-754. [9] Corrigan-Salter, B.R. and Staic, M.D., Higher-order and secondary Hochschild cohomology, C. R. Math. Acad. Sci. Paris 354(11) (2016), 1049-1054. [10] Gerstenhaber, M., The cohomology structure of an associative ring, Ann. of Math. 78(2) (1963), 267-288. [11] Gerstenhaber, M., On the deformation of rings and algebras, Ann. of Math. 79(2) (1964), 59-103. [12] Gerstenhaber, M. and Schack, S.D., Algebraic cohomology and deformation theory, In: Deformation theory of algebras and structures and applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 247, 11-264, Kluwer Acad. Publ., Dordrecht, 1988. [13] Ginot G., Higher order Hochschild cohomology, C. R. Math. Acad. Sci. Paris 346(1-2) (2008), 5-10. [14] Ginot, G., Tradler, T., and Zeinalian, M., Higher Hochschild homology, topological chiral homology and factorization algebras, Comm. Math. Phys. 326(3) (2014), 635- 686. [15] Hochschild, G., On the cohomology groups of an associative algebra, Ann. of Math. 46(2) (1945), 58-67. [16] Laubacher, J., Secondary Hochschild and cyclic (co)homologies, OhioLINK Electronic Theses and Dissertations Center, Columbus, Ohio, 2017. Dissertation (Ph.D.)–Bowling Green State University. [17] Laubacher, J., Properties of the secondary Hochschild homology, Algebra Colloq. 25(2) (2018), 225-242. [18] Laubacher, J., Staic, M.D.,and Stancu, A., Bar simplicial modules and secondary cyclic (co)homology, J. Noncommut. Geom. 12(3) (2018), 865-887. [19] Loday, J-L., Opérations sur l’homologie cyclique des algébres commutatives, Invent. Math. 96(1) (1989), 205-230. [20] Loday, J-L., “Cyclic homology", Grundlehren der Mathematischen Wissenchaften [Fundamental Principles of Mathematical Sciences] 301, Springer-Verlag, Berlin, second edition, 1998. Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with T. Pirashvili. [21] Mac Lane, S., “Homology". Classics in Mathematics, Springer-Verlag, 1995. Reprint of the 1975 edition. [22] Pirashvili, T., Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup. 33(2) (2000), 151-179. [23] Staic, M.D., Secondary Hochschild cohomology, Algebr. Represent. Theory 19(1) (2016), 47-56. [24] Staic, M.D. and Stancu, A., Operations on the secondary Hochschild cohomology, Homology Homotopy Appl. 17(1) (2015), 129-146. [25] Weibel, C.A., “An Introduction to Homological Algebra", Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 1994. | ||
آمار تعداد مشاهده مقاله: 767 تعداد دریافت فایل اصل مقاله: 693 |