On injective objects and existence of injective hulls in đ-TOP/(đ, đ) | ||
Categories and General Algebraic Structures with Applications | ||
Ů ŮاŮŮ 8Ř ŘŻŮع٠17Ř Ř´Ů Ř§ŘąŮ 1Ř Ů ŮŘą 2022Ř ŘľŮŘŮ 173-202 اؾ٠٠ŮاŮŮ (459.93 K) | ||
ŮŮŘš Ů ŮاŮŮ: Research Paper | ||
Ř´Ůاس٠دŰŘŹŰتا٠(DOI): 10.52547/cgasa.2022.102640 | ||
ŮŮŰŘłŮدگا٠| ||
Harshita Tiwari* Ř Rekha Srivastava | ||
Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India. | ||
ÚÚŠŰŘŻŮ | ||
In this paper, motivated by Cagliari and Mantovani, we have obtained a characterization of injective objects (with respect to the class of embeddings in the category đ-TOP of đ-topological spaces) in the comma category đ-TOP/(đ,đ), when (đ,đ) is a stratified đ-topological space, with the help of their đ0-reflection. Further, we have proved that for any đ-topological space (đ,đ), the existence of an injective hull of ((đ, đ), đ ) in the comma category đ-TOP/(đ, đ) is equivalent to the existence of an injective hull of its đ0-reflection ((đ Ě,đ Ě), đ Ě) in the comma category Q-TOP/(đ Ě, đ Ě ) (and in the comma category đ-TOP0/(đ Ě, đ Ě ), where đ-TOP0 denotes the category of đ0-đ-topological spaces). | ||
ÚŠŮŰŘŻŮاÚŮâŮا | ||
Injective objectsŘ Injective hullŘ T0-reflection | ||
٠عا؏ؚ | ||
[1] Adamek, J., Herrlich, H., and Strecker, G., “Abstract and Concrete Categories”, Wiley- Interscience, 1990.
[2] Adamek, J., Herrlich, H., Rosicky, J., and Tholen, W., Weak factorization systems and topo- logical functors, Appl. Categ. Struct. 10 (2002), 237-249.
[3] Adamek, J., Herrlich, H., Rosicky, J., and Tholen, W., Injective hulls are not natural, Appl. Categ. Struct. 48 (2002), 379-388.
[4] Cagliari, F. and Mantovani, S., Injective topological fibre spaces, Topology Appl. 125 (2002), 525-532.
[5] Cagliari, F. and Mantovani, S., đ0-reflection and injective hulls of fibre spaces, Topology Appl. 132 (2003), 129-138.
[6] Cagliari, F. and Mantovani, S., Injective hulls of đ0-topological fibre spaces, Appl. Categ. Struct. 11 (2003), 377-390.
[7] Chang, C.L., Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
[8] Goguen, J., The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973), 734-742.
[9] Singh, S.K. and Srivastava, A.K., A characterization of the category Q-TOP, Fuzzy Sets Syst. 227 (2013), 46-50.
[10] Singh, S.K. and Srivastava, A.K., On T0-objects in đ-TOP, Ann. Fuzzy Math. Inform. 12 (2016), 597-604.
[11] Solovyov, S.A., Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst. 159 (2008), 2567-2585.
[12] Tholen, W., Exponentiable monomorphisms, Quaest. Math. 9 (1986), 443-458.
[13] Tholen, W., Essential weak factorization systems, Contrib. Gen. Algebra 13 (2001), 321-333.
[14] Wyler, O., Injective spaces and essential extensions in TOP, Gen. Topology Appl. 7 (1977), 247-249. | ||
آŮ
اع تؚداد Ů
شاŮŘŻŮ Ů
ŮاŮŮ: 298 تؚداد ŘŻŘąŰاŮŘŞ ŮاŰ٠اؾ٠Ů
ŮاŮŮ: 774 |