بررسی اثر کوید-19 بر تجارت بینالملل: رهیافت شبکه | ||
اقتصاد و الگو سازی | ||
دوره 13، شماره 3 - شماره پیاپی 51، آذر 1401، صفحه 29-54 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.48308/jem.2023.229751.1807 | ||
نویسندگان | ||
الهه رضائیان1؛ احمد صلاح منش* 2؛ معصومه خیرخواه زاده3 | ||
1دانشجوی دکتری گروه اقتصاد دانشکده اقتصاد و علوم اجتماعی دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2استادیار گروه اقتصاد دانشکده اقتصاد و علوم اجتماعی دانشگاه شهید چمران اهواز، اهواز، ایران | ||
3استادیار گروه کامپیوتر دانشکده علوم ریاضی و کامپیوتر دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
همهگیری کوید-19 با اثرات متعدد بهداشتی، اجتماعی و اقتصادی جامعه بشری را به شدت تحت تأثیر قرار داده است. تأثیر آن بر تجارت بینالملل بسیار زیاد بوده؛ به گونهای که سازمان تجارت جهانی بیان میکند که "همهگیری کوید-19 نشاندهنده یک اختلال بی سابقه در اقتصاد جهانی و تجارت جهانی است، زیرا تولید و مصرف در سراسر جهان کاهش یافته است". بنابراین گسترش همهگیری کوید-19 موجب تغییرات قابل توجهی در حجم و ساختار تجارت بین کشورها گردیده که ارزیابی و بررسی کمی این تغییرات حائز اهمیت است. از اینرو در این مقاله به بررسی روابط تجاری بین ایران و سایر کشورها در شبکه تجارت جهانی قبل و پس از همهگیری کوید-19 پرداخته شده است. در این راستا، با استفاده از دادههای 149 کشور طی دو سال 2018 و 2020 و به کار گیری روش شبکه و استفاده از الگوریتم کشف اجتماع لیدن، اجتماعات تجاری شناسایی و سپس با استفاده از شاخصهای مرکزیت و تراکم موقعیت و جایگاه کشور در اجتماع تجاری آسیا-آفریقا بررسی شده است. با مقایسهی ساختار شبکهی تجارت طی دو سال 2018 و 2020 نتایج نشان میدهد با همهگیری کوید-19 ساختار روابط تجاری و موقعیت اکثر کشورها به ویژه کشور ایران به شدت تحت تأثیر قرار گرفته است؛ به گونهای که شاخصهای مرکزیت قدرت، نزدیکی، بردار ویژه و شاخص تراکم در سال 2020 در مقایسه با سال 2018 کاهش یافته است که بیانگر کاهش سهم تجارت، تنزل اهمیت و جایگاه کشورها به ویژه کشور ایران است. | ||
کلیدواژهها | ||
شبکه تجارت جهانی؛ معیارهای مرکزیت؛ کشف اجتماع؛ کوید-19 | ||
عنوان مقاله [English] | ||
Examining the Impacts of Covid-19 on International Trade: The Network Approach | ||
نویسندگان [English] | ||
Elahe Rezaian1؛ Ahmad Salahmanesh2؛ Masoumeh Kheirkhahzadeh3 | ||
1PhD Candidate in Economics, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
2Assistant Professor of Economics, Faculty of Economics and Social Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
3Assistant Professor of Computer Science, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
چکیده [English] | ||
The COVID-19 pandemic produced an enormous impact on human society with multiple health, social and economic effects. The impact on international trade has been enormous. Thus, the World Trade Organization (WTO) states that “the COVID-19 pandemic represents an unprecedented disruption to the global economy and world trade, as production and consumption are scaled back across the globe”. Thus, the spreading of the general pandemic COVID-19 has caused significant changes in the volume and structure of trade between countries. This essay examines the trade ties between Iran and other countries in the world trade network before and after the outbreak of the Covid-19. To this end, using the data provided by 149 countries in 2018 and 2020, and drawing on Network Analysis Method and Leiden’s Community Detection Algorithms, and then utilizing the indicators of centrality and density, the county's position in the Asian-African trade complex was put to examination. By comparing the structure of the trade network during the 2018 and 2020, the results show that with the outbreak of the Covid-19, the structure of trade relations and the position of most of the countries, especially Iran, has been severely affected, to an extent that the indicators of centrality of strength, closeness, the Eigen vector and density indicator have decreased in 2020 compared to 2018, which demonstrates the downfall in the share of trade and the decline in the importance and position of countries, especially Iran. | ||
کلیدواژهها [English] | ||
World Trade Network, Centrality Measures, Community Detection, COVID-19 | ||
مراجع | ||
- Ali, M., Alam, N., & Rizvi, S.A.R. (2020). Coronavirus (COVID-19)-An epidemic or pandemic for financial markets. Journal of Behavioral and Experimental Finance, 27, 100341. - Antonietti, R., Falbo, P., Fontini, F., Grassi, R., & Rizzini, G. (2021). International trade network: country centrality and covid-19 pandemic. arXiv preprint arXiv:2107.14554. - Aragona, T. (2020). Supply chain and de-globalization issue during Covid-19. Department Of Economics and Business - Baldwin, R., & Di Mauro, B. W. (2020). Economics in the time of COVID-19: A new eBook. VOX CEPR Policy Portal, 2-3. - Bhattacharya, K., Mukherjee, G., Saramäki, J., Kaski, K., & Manna, S. S. (2008). The international trade network: weighted network analysis and modelling. Journal of Statistical Mechanics: Theory and Experiment, 2008(02), P02002. - Bonacich, P. (1972). Technique for analyzing overlapping memberships. Socio-logical methodology, 4, 176-185. - Cepeda-López, F., Gamboa-Estrada, F., León, C., & Rincón-Castro, H. (2019). The evolution of world trade from 1995 to 2014: A network approach. The Journal of International Trade & Economic Development, 28(4), 452-485. - Fagiolo, G., Reyes, J., & Schiavo, S. (2010). The evolution of the world trade web: a weighted-network analysis. Journal of Evolutionary Economics, 20(4), 479-514. - Ferligoj, A., & Batagelj, V. (1992). Direct multicriteria clustering algorithms. Journal of classification, 9(1), 43-61. - Haroon, O., & Rizvi, S. A. R. (2020). COVID-19: Media coverage and financial markets behavior—A sectoral inquiry. Journal of Behavioral and Experimental Finance, 27, 100343. - International Monetary Fund (IMF). (2021). Direction of trade statistics. Washington, D.C., IMF. - Jackson, M. O. (2010). Social and economic networks. Princeton university press. - Javorcik, B. (2020). Global supply chains will not be the same in the post-COVID-19 world. COVID-19 and trade policy: Why turning inward won’t work, 111. - Jordà, Ò., Singh, S. R., & Taylor, A. M. (2022). Longer-run economic consequences of pandemics. Review of Economics and Statistics, 104(1), 166-175. - Kersan‐Škabić, I. (2022). The COVID‐19 pandemic and the internationalization of production: A review of the literature. Development Policy Review, 40(2), e12560. - Kiyota, K. (2022). The COVID-19 pandemic and the world trade network. Journal of Asian Economics, 78, 101419. - Mirnezami, S. R., & Rajabi, S. (2020). Estimating the Impacts of COVID-19 on Iran Economy: Modelling seven scenarios. Science and Technology Policy Letters, 10(2), 7-19 (In Persian). - Narayan, P. K., Phan, D. H. B., & Liu, G. (2021). COVID-19 lockdowns, stimulus packages, travel bans, and stock returns. Finance research letters, 38, 101732. - Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113. - Newman, M.E. (2010). Networks: An Introduction. Oxford University Press. - Njindan Iyke, B. (2020). The disease outbreak channel of exchange rate return predictability: Evidence from COVID-19. Emerging Markets Finance and Trade, 56(10), 2277-2297. - Otte E, Rousseau R (2002) Social network analysis: a powerful strategy, also for the information sciences. J Inf Sci, 28(6), 441–453. - Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical review E, 76(3), 036106. - Rezaeian, E., Salahmanesh, A., Frazmand, H., & Kheikhahzadeh, M. (2021). Dynamic Analysis of Iran's Trade Pattern in the Framework of Regional Agreements: A Network Approach. Journal of Economics and Modeling, 12(1), 101-140 (In Persian). - Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(3), 581-603. - Sadeghi Amroabadi, B. (2022). Analyzing the causal Relationship between Global Trade and the Prevalence of Covid 19. New Economy and Trade, 17(1), 137-166 (In Persian). - Sajedianfard, N., Hadian, E., Samadi, A. H., & Dehghan Shabani, Z. (2019). Investigating the effect of international sanctions on Iran's trade structure: a network theory approach. Journal of Economics and Modeling, 10(3), 1-28 (In Persian). - Schoeneman, J., & Brienen, M. (2021, November). The covid-19 pandemic and export disruptions in the United States. In International Conference on Complex Networks and Their Applications (pp. 721-731). Springer, Cham. - Vidya, C.T. (2021). Has Covid-19 Shaken the World Trade and China’s Preeminence? Asian Economics Letters, 3, 25380. - Vidya, C. T., & Prabheesh, K. P. (2020). Implications of COVID-19 pandemic on the global trade networks. Emerging Markets Finance and Trade, 56(10), 2408-2421. - Yu, J. K., & Ma, J. Q. (2020). Social network analysis as a tool for the analysis of the international trade network of aquatic products. Aquaculture International, 28(3), 1195-1211. - Yuan, L., Chen, X., Song, C., Cao, D., & Yi, H. (2021). Spatiotemporal Evolution and Determinant Factors of the Intra-Regional Trade Community Structures of the Indian Ocean Region. ISPRS International Journal of Geo-Information, 10(4), 214-230. - Zhang, W. W., Dawei, W., Majeed, M. T., & Sohail, S. (2021). COVID-19 and international trade: insights and policy challenges in China and USA. Economic Research-Ekonomska Istraživanja, 1-12, 1991-2002. | ||
آمار تعداد مشاهده مقاله: 408 تعداد دریافت فایل اصل مقاله: 265 |