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In the realm of solving large linear systems of equations, multisplitting methods emerge as a prominent class of

iterative techniques. This paper introduces two-step diagonal and off-diagonal multisplitting methods and evaluates

their effectiveness in comparison to symmetric successive overrelaxation multisplitting and quasi-Chebyshev accelerated

multisplitting techniques for solving linear systems of equations. Additionally, this study investigates convergence theorems

when the system matrix is an H-matrix and demonstrates the effectiveness of the proposed methods by presenting numerical

results. Copyright c© 2022 Shahid Beheshti University.
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1. Introduction

The system of linear equations, represented as

Ax = b, A ∈ Rn×n, x ∈ Rn, b ∈ Rn, (1)

is encountered in various fields such as industrial applications, engineering sciences, and economics. The growing interest in

studying effective techniques for solving these systems has led to the emergence of a range of powerful methods, including

direct, iterative, and multisplitting methods [2,4,11–17,21,27,29,31,35,40]. Iterative methods are particularly suited for solving

systems with a sparse coefficient matrix. The basic idea behind iterative methods stems from the single splitting of the coefficient

matrix A, which can be expressed as follows:

A = F − G, (2)

x (k+1) = F−1Gx (k) + F−1b, k = 0, 1, 2, ..., (3)

where F is a nonsingular matrix. For any initial vectors x (0), the iterative scheme (3) converges to the unique solution if and

only if ρ(F−1G) < 1 ( where ρ represents the spectral radius ).

Jacobi, Gauss-Seidel, and successive overrelaxation methods are classical iterative methods commonly used for solving linear

systems [2, 27, 35]. An effective numerical iterative method is the two-step diagonal and off-diagonal method [17]. The Krylov

subspace methods, such as conjugate gradient (CG), minimal residual (MINRES), and general minimal residual (GMRES), have

proven to be highly effective for positive definite, symmetric indefinite, and general sparse systems, respectively [7, 20, 22, 34].

Chebyshev iterative methods, including Chebyshev semi-iterative and quasi-Chebyshev accelerated methods, also exhibit strong

performance [26, 36, 42]. Among the various iterative techniques, multisplitting methods are recognized as powerful tools for

solving large linear systems of equations [1, 30]. These methods, based on multiple splittings of the coefficient matrix, were first

introduced by O’Leary and White in 1985 [32]. An ordered triple (Fi , Gi , Ei) is referred to as a multisplitting of A if

1. A = Fi − Gi , where the matrices Fi are invertible (i = 1, 2, ..., l).

2.
∑
i

Ei = I, where the matrices Ei are diagonal and Ei ≥ 0.
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By partitioning the system matrix in several ways

A = Fi − Gi , i = 1, 2, ..., l ,

and by utilizing weighting matrices Ei (i = 1, 2, ..., l), a multisplitting method can be defined as follows:

Method 1 Multisplitting iteration method [32]

Let (Fi , Gi , Ei) (i = 1, 2, ..., l) be a multisplitting of the matrix A ∈ Rn×n.

1. Select an initial guess x (0) ∈ Rn.

2. For k = 0, 1, ... until convergence.

3. For i = 0, 1, ..., l

x (k+1,i) = F−1
i Gix

(k) + F−1
i b. (4)

4. Compute x (k+1) =
l∑
i=1

Eix
(k+1,i).

It has been observed in [32] that the use of a relaxed parameter significantly enhances the convergence of multisplitting methods.

Deren [38] introduced a class of relaxed parallel multisplitting methods.

Method 2 Relaxed multisplitting iteration method [32]

Let (Fi , Gi , Ei) (i = 1, 2, ..., l) be a multisplitting of the matrix A ∈ Rn×n.

1. Select an initial guess x (0) ∈ Rn.

2. For k = 0, 1, ... until convergence.

3. For i = 0, 1, ..., l

x (k+1,i) = F−1
i Gix

(k) + F−1
i b. (5)

4. Compute x (k+1) = θ
l∑
i=1

Eix
(k+1,i) + (1− θ)x (k), where θ is the relaxation parameter.

The multisplitting AOR and TOR methods were proposed for the case when the system matrix is an H-matrix [9, 10].

Subsequently, Frommer and Mayer studied the convergence properties of parallel multisplitting methods [23, 25]. In [45], Yun

analyzed the convergence of both the multisplitting and relaxed multisplitting methods associated with the SSOR method.

Additionally, Bai examined the convergence of two-stage multisplitting methods [3, 6].

With the multisplitting method, a task is divided into multiple subtasks, solved iteratively, then combined by weighting matrices to

obtain the final result. This technique is also used to solve problems other than linear equations, such as nonlinear multisplitting

methods, multisplitting for linear complementarity problems, and multisplitting preconditioned methods [5, 18, 19, 28, 39].

For solving linear systems of equations, the two-step diagonal and off-diagonal multisplitting methods, as well as the relaxed

DOM (RDOM) are proposed.This paper presents numerical results to demonstrate the effectiveness of these new methods

by comparing them with the symmetric successive overrelaxation multisplitting method (SSORM) and the quasi-Chebyshev

accelerated multisplitting method (QCAM) [41–43, 45]. The numerical results demonstrate the efficiency and effectiveness of

the proposed methods. The following is a list of the next sections.

• Section 2 contains some definitions, lemmas, and theorems used throughout the article.

• Section 3 presents new multisplitting and relaxed new multisplitting methods.

• Section 4 proposes theorems that justify the convergence of new methods under certain conditions.

• Section 5 provides examples to show that new algorithms can reduce CPU time and iteration steps (IT) compared with

the SSORM and QCAM methods.

2. Preliminaries

This section aims to provide a concise introduction to some essential definitions, notations, and lemmas that are utilized

throughout this paper. The matrix A = (ai j) ∈ Rn×n is nonnegative or A ≥ 0 if ai j ≥ 0 (1 6 i , j 6 n). The absolute value of

matrix A is defined by |A| = (|ai j |). For any two matrices A and B of compatible sizes |AB| ≤ |A||B|. In [37], it was shown that

if |A| ≤ B, then ρ(A) ≤ ρ(B).

The square matrix A = (ai j) is classified as a Z-matrix if all its off-diagonal entries (entries not on the main diagonal) are

non-positive. In the context of linear algebra, a matrix A ∈ Rn×n is considered an M-matrix if A is a Z-matrix and nonsingular

with A−1 ≥ 0. Furthermore, an H-matrix is defined as a matrix A ∈ Rn×n for which its comparison matrix 〈A〉 is an M-matrix.

The comparison matrix 〈A〉 is

〈A〉 = (〈ai j〉) =

{
|ai j |, i = j,

−|ai j |, i 6= j.
(6)

Also, a matrix A is monotone if A is nonsingular and A−1 ≥ 0.

The decomposition A = F − G is called [8]
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1. A regular splitting of A if F is a nonsingular matrix with F−1 ≥ 0 and G ≥ 0.

2. Weak regular splitting if F−1 ≥ 0 and F−1G ≥ 0.

3. A M-splitting if F is an M-matrix and G > 0.

Lemma 1 [23, 44] Let A ∈ Rn×n be an H-matrix, and A = D − B, where D is the diagonal part of the matrix A, then the

following statements hold:

1. A is nonsingular and |A−1| ≤ 〈A〉−1;

2. |D| is nonsingular and ρ(|D|−1|B|) < 1.

Lemma 2 [37] Suppose A is a nonnegative irreducible matrix, then ρ(A) is an eigenvalue of A and the eigenvector x corresponding

to ρ(A) such that x > 0.

Lemma 3 [33] Let A be a Z-matrix, then the following statements are equivalent:

1. A is an M-matrix;

2. There exists a positive vector x, such that Ax > 0;

3. Let A = F − G be a splitting of A and F−1 ≥ 0, G ≥ 0, then ρ(F−1G) < 1.

Lemma 4 [37] If |A| ≤ B, then ρ(A) ≤ ρ(B).

Lemma 5 [29] Let A = F − G be a regular splitting of the matrix A. Then ρ(F−1G) < 1 if and only if A is nonsingular and

A−1 ≥ 0.

Lemma 6 [24,44] Assume that there exists a positive vector (u > 0, u ∈ Rn) such that |A|u < u. Then there exists a constant

α ∈ [0, 1) such that ρ(A) 6 α.

Theorem 1 [32]

1. If (Fi , Gi), i = 1, 2, ..., l is a weak regular splitting of a matrix A satisfying A−1 ≥ 0, then the multisplitting Method 1 is

convergent;

2. If ‖F−1
i Gi‖∞ < 1, then the multisplitting Method 1 is convergent.

3. Convergence theory

By applying the multisplitting (Fi , Gi , Ei) on the DOS method [17], this section presents the DOM method and its relaxed variant

(RDOM) for solving the linear system (1). Then, the convergence of these methods is discussed.

Method 3 DOM method for solving (1)

Given an initial vector x (0);

For k = 0, 1, 2, ... until convergence do

For i = 1, 2, ..., l do

x (k+ 1
2 ,i) =D−1[αD + (1− α)B]x (k) +D−1(1− α)b,

x (k+1,i) =(D − βLi)−1[(1− β)D + βUi ]x
(k+ 1

2 ,i) + (D − βLi)−1βb.

x (k+1) =

l∑
i=1

Eix
(k+1,i).

(7)

The RDOM method is an extension of Method 3, where incorporates a relaxation parameter to enhance the convergence

behavior.

Method 4 RDOM method for solving (1)

Given an initial vector x (0);

For k = 0, 1, 2, ... until convergence do

For i = 1, 2, ..., l do

x (k+ 1
2 ,i) =D−1[αD + (1− α)B]x (k) +D−1(1− α)b,

x (k+1,i) =(D − βLi)−1[(1− β)D + βUi ]x
(k+ 1

2 ,i) + (D − βLi)−1βb.

x (k+1) = (θ)

l∑
i=1

Eix
(k+1,i) + (1− θ)x (k).

(8)
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In both methods, suppose the coefficient matrix A can be decomposed into A = D − Li − Ui , where D is a diagonal matrix,

Li ’s are strictly lower triangular matrices, and Ui ’s are general matrices. By decomposing the matrix this way, diagonal and

off-diagonal components can be separated, which can help with iterative solving techniques. The next step is to discuss the

convergence of the proposed methods.

Theorem 2 Let A ∈ Rn×n be an H-matrix, b ∈ Rn, D = diag(A), (Fi , Gi , Ei), (i = 1, 2, ..., l) be a multisplitting of A and

〈A〉 = |D| − |Li | − |Ui |. Then, the multisplitting Method 3 converges to the exact solution of Ax = b for any initial vector x (0),

provided that 0 ≤ α ≤ 1 and 0 < β ≤ 1.

Proof. The DOM Algorithm 3 can be written as

x (k+1) =

l∑
i=1

EiF
−1
i Gix

(k) +

l∑
i=1

EiF
−1
i b, (9)

where

Fi =
1

1− α+ αβ
D[D +

(1− α)β

1− α+ αβ
Ui ]
−1

(D − βLi),

Gi =
1

1− α+ αβ
D[D +

(1− α)β

1− α+ αβ
Ui ]
−1

[(1− β)D + βUi ]D
−1[αD + (1− α)B].

(10)

The iteration matrix is T =
l∑
i=1

EiF
−1
i Gi . It is sufficient to prove that ρ(T ) < 1.

By applying the inequality ρ(T ) ≤ ρ(|T |), it is sufficient to demonstrate that ρ(|T |) < 1. As

|T | = |
l∑
i=1

EiFi
−1Gi | ≤

l∑
i=1

Ei |Fi−1Gi |

≤
l∑
i=1

Ei |Fi−1||Gi |

≤
l∑
i=1

Ei F̃i
−1
G̃i ,

(11)

where

F̃i =|D|[|D|+ (1− α)β

1− α+ αβ
|Ui |]

−1

(|D| − β|Li |),

G̃i =|D|[|D|+ (1− α)β

1− α+ αβ
|Ui |]

−1

[(1− β)|D|+ β|Ui |]|D|−1[α|D|+ (1− α)|B|].
(12)

For 0 ≤ α ≤ 1 and 0 < β ≤ 1

F̃i − G̃i =(1− α+ αβ)〈A〉.

As F̃i
−1 ≥ 0 and G̃i ≥ 0, the splitting F̃i − G̃i is a regular splitting of (1− α+ αθ)〈A〉 for i = 1, 2, ..., l . Additionally, since A is

an H-matrix, thus 〈A〉−1 ≥ 0. Therefore, based on Lemma 3 and Theorem 1,

ρ(

l∑
i=1

Ei F̃i
−1
G̃i) < 1. (13)

This implies that

ρ(

l∑
i=1

EiFi
−1Gi) < 1.

�
The following theorem presents the convergence of the RDOM Method 4 for solving equation (1).

Theorem 3 Assume that A ∈ Rn×n is an H-matrix, (Fi , Gi , Ei) (i = 1, 2, ..., l) is a multisplitting of A, 〈A〉 = |D| − |Lk | − |Uk |.
When λ = ρ(|D|−1|B|) and γ = 1− α+ αβ, the RDOM method is convergent for any initial vector if the parameters satisfy

0 ≤ α ≤ 1, 0 < β ≤ 1 and 0 < θ <
2

2− (1− λ)γ
.
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Proof. In RDOM method,

x (k+1) = θ

l∑
i=1

EiF
−1
i Gix

(k) + θ

l∑
i=1

EiF
−1
i b + (1− θ)x (k),

that Fi ’s and Gi ’s are defined by (10).

Let Tθ = θ
l∑
i=1

EiF
−1
i Gi + (1− θ), Since ρ(Tθ) ≤ ρ(|Tθ|) it is suffices to show ρ(|Tθ|) < 1.

|Tθ| = |θ
l∑
i=1

EiF
−1
i Gi + (1− θ)I| 6 θ

l∑
i=1

Ei F̃
−1
i G̃i + (1− θ)I,

where F̃i ’s and G̃i ’s are defined in (12). Thus

G̃i = F̃i − (1− α+ αβ)〈A〉 = F̃i − γ(|D| − |B|).

As a result,

|Tθ| 6 θ
l∑
i=1

Ei F̃
−1
i G̃i + |1− θ|I

6 θ
l∑
i=1

Ei F̃
−1
i

= θ

l∑
i=1

Ei F̃i
−1

(F̃i − γ(|D| − |B|)) + |1− θ|I

= θ

l∑
i=1

Ei(I − γ(F̃−1
i (|D| − |B|))) + |1− θ|I

= θI + |1− θ|I − γθ
l∑
i=1

Ei F̃i
−1|D|(I − |D|−1|B|)

(14)

According to the given information, for any ε > 0, the matrix |D|−1|B|+ εeeT has only positive entries and is irreducible, where

e = (1, 1, ..., 1)T ∈ Rn [23]. By Lemma 2, for any ε > 0 there exist a positive vector u > 0 such that (|D|−1|B|+ εeeT )u = λεu,

where λε = ρ(|D|−1|B|+ εeeT ).

|Tθ| 6 θI + |1− θ|I − γθ
l∑
i=1

Ei F̃i
−1|D|(I − |D|−1|B|)

6 θI + |1− θ|I − γθ
l∑
i=1

Ei F̃i
−1|D|(I − |D|−1|B| − εeeT )

then

|Tθ|u 6 (θI + |1− θ|I − γθ
l∑
i=1

Ei F̃i
−1|D|(I − |D|−1|B| − εeeT ))u

= (θ + |1− θ|)u − γθ
l∑
i=1

Ei F̃i
−1|D|(I − |D|−1|B| − εeeT )u

= θu + |1− θ|u − γθ(u − λεu)

=


(1− (1− λε)γθ)u < u 0 < θ ≤ 1

(2θ − 1− (1− λε)γθ)u < u 1 < θ <
2

2− (1− λ)γ
.

(15)

By considering the specified constraints 0 ≤ α ≤ 1 and 0 < β ≤ 1, it can be inferred that 0 < γ ≤ 1 and 1− γ + λγ =

1− (λ− 1)γ < 1.

By the continuity of the spectral radius, one can deduce λε < 1 and 1− γ + λεγ < 1 for sufficiently small ε > 0. As per Lemma

6, it follows that ρ(Tθ) < 1 �

Remark 1 Theorems 2 and 3 satisfies for M-matrix A ∈ Rn×n. Since A is an M-matrix conclude that A is an H-matrix (A = 〈A〉).
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4. Numerical results

The purpose of this section is to demonstrate the effectiveness of DOM and RDOM methods (Method 3 and Method 4) using

three numerical examples. DOM and RDOM methods are compared with the quasi-Chebyshev accelerated multisplitting method

(QCAM) [41, 42] and numerical results are reported. Also, as DOM and RDOM methods are two-step multisplitting methods,

these are compared with symmetric successive overrelaxation multisplitting multisplitting (SSORM) [45] method which is a

two-step mutisplitting method too. In this way reported numerical results show that presented methods are performed efficiently.

Numerical computations are conducted under the following assumptions:

• The matrix A ∈ Rn×n is an H-matrix and is decomposed as A = D − Li − Ui for i = 1, 2, ..., l , where D = diag(A).

• The initial guess for the solution is x (0) = (0, 0, ..., 0)T ∈ Rn.

• The iteration process stops when ||Ax − b||2 < 10−5.

• The weight matrices are defined as Ei = Diag(0, 0, ..., ISi , 0, 0, ..., 0) ∈ Rn×n, where the size Si is determined as follows:

Si =

{
ψq + 1 i 6 ψr ,

ψq otherwise.

Note that n = ψq l + ψr and 0 6 ψr < l .

• In the QCAM method, Mi represents the lower-triangular part of EiAEi , and Ni = Mi − A.

It is worth mentioning that all the examples are implemented in MATLAB 2020 on a personal computer (16 GB RAM).

The following examples illustrate the application of the DOM, RDOM, SSORM, and QCAM algorithms to solve of linear systems.

Example 1 [4, 17] The system of linear equations (1) is presented as follows in this example.

(wCV + CH)x = b,

where

• CV and CH are the viscous and hysteretic damping matrices, respectively, and w is the driving circular frequency.

• CV = 10I and CH = µH with a damping coefficient µ, and H ∈ Rn×n is the five-point centered difference matrix

approximating the negative Laplacian operator with homogeneous Dirichlet boundary conditions, on a uniform mesh

in the unit square [0, 1]× [0, 1] with the mesh-size r = 1
m+1

.

• H = I ⊗Wm +Wm ⊗ I, with Wm = r−2tridiag(−1, 2,−1) ∈ Rm×m. Then H is an n × n block-tridiagonal matrix, with

n = m2.

• w = π, µ = 0.02, and b = (−w 2I +H + wCV + CH)B, with B being the vector of all entries equal to 1.

Example 2 [4, 17] The system of linear equations

(I ⊗W +W ⊗ I)x = q,

where

• W = tr idiag(−1, 2,−1) ∈ Rm×m,

• q = [10(I ⊗WC +WC ⊗ I) + 9(e1e
T
m + eme

T
1 )⊗ I − (I ⊗W +W ⊗ I)]B,

• WC = W − e1e
T
m + eme

T
1 ∈ Rm×m, e1and em are unit vectors,

• B is the vector that all entries are one.

Example 3 [4, 17] A system of linear equations is represented by the following:

(H +
(3 +

√
3)I

τ
)x = b,

Here are the details:

• The time step-size is denoted by τ .

• The matrix K is a five-point centered difference matrix that approximates the negative Laplacian operator L = −∆ with

homogeneous Dirichlet boundary conditions. It is defined on a uniform mesh in the domain [0, 1]× [0, 1] with a mesh size

of r = 1
m+1

.

• The matrix H ∈ Rn×n is defined as H = I ⊗Wm +Wm ⊗ I, where I is the identity matrix and Wm = r−2 tridiag

(−1, 2,−1) ∈ Rm×m.

• The matrix H ∈ Rn×n is a block-tridiagonal matrix with size n = m2.

• In the numerical computations, τ = r , and the entries of vector b are defined as bj = j
τ(j+1)2 for j = 1, 2, . . . , n. These

specific choices of parameters and matrices define the system of linear equations.
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Table 1. Numerical results for examples with α = 0, β = 1

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.01015 14 9.3796e-06 0.1977 1177 9.9624e-06 0.035612 226 9.6784e-06

30 DOM 0.011293 20 6.7773e-06 0.22549 1414 9.9296e-06 0.039753 272 9.8892e-06

30 QCAM 0.0073556 44 7.0581e-06 0.33806 2090 9.9948e-06 0.10576 681 9.8875e-06

30 SSORM 0.28931 143 9.3089e-06 2.5851 1850 9.9512e-06

50 RDOM 0.020519 38 6.2426e-06 1.2841 3057 9.9941e-06 0.16085 426 9.9879e-06

50 DOM 0.025147 47 9.175e-06 1.5531 3670 9.9803e-06 0.18858 513 9.8566e-06

50 QCAM 0.05054 109 9.7182e-06 2.3486 5515 9.9972e-06 0.51974 1311 9.9793e-06

50 SSORM 5.0108 324 9.6978e-06 15.8979 3479 9.9831e-06

70 RDOM 0.072625 72 7.8765e-06 5.1269 5758 9.9862e-06 0.49233 634 9.999e-06

70 DOM 0.089581 88 8.9547e-06 6.0701 6910 9.9981e-06 0.49233 763 9.8453e-06

70 QCAM 0.21233 209 9.497e-06 1.8856 1960 9.9631e-06

70 SSORM 19.4244 598 9.7495e-06 50.6818 5168 9.9882e-06

Table 2. Numerical results for examples with α = 0.25, β = 1

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.0038226 16 9.9099e-06 0.3196 1386 9.9277e-06 0.055384 247 9.5136e-06

30 DOM 0.0051694 22 9.2366e-06 0.38129 1664 9.9577e-06 0.073149 297 9.785e-06

30 QCAM 0.01749 44 7.0581e-06 0.35256 2090 9.9948e-06 0.14223 681 9.8875e-06

30 SSORM 0.090516 143 7.7415e-06 3.3864 1850 9.9512e-06

50 RDOM 0.02412 42 6.5746e-06 2.0975 3598 9.9724e-06 0.23117 465 9.936e-06

50 DOM 0.028639 52 8.5205e-06 2.5658 4318 9.9929e-06 0.28079 559 9.9922e-06

50 QCAM 0.063078 109 9.7182e-06 2.2163 5515 9.9972e-06 0.69906 1311 9.9793e-06

50 SSORM 4.888 324 9.6978e-06 19.6991 3479 9.9831e-06

70 RDOM 0.08909 79 8.229e-06 7.7513 6775 9.9854e-06 0.72537 692 9.9419e-06

70 DOM 0.11093 97 8.1446e-06 9.2484 8131 9.9872e-06 0.88691 832 9.89e-06

70 QCAM 0.9262 209 9.497e-06 2.3514 1960 9.9631e-06

70 SSORM 47.9849 598 9.7495e-06 63.0641 5168 9.9882e-06

Table 3. Numerical results for examples with α = 0.5, β = 1

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.0047245 19 4.7584e-06 0.28384 1683 9.9976e-06 0.042523 271 9.8264e-06

30 DOM 0.0055472 25 7.0014e-06 0.32785 2021 9.9864e-06 0.055066 327 9.6275e-06

30 QCAM 0.0099598 44 7.0581e-06 0.35229 2090 9.9948e-06 0.14542 681 9.8875e-06

30 SSORM 0.26405 143 9.3089e-06 2.6091 1850 9.9512e-06

50 RDOM 0.026523 46 9.3099e-06 1.8926 4369 9.9972e-06 0.19539 512 9.8066e-06

50 DOM 0.032858 58 7.6432e-06 2.2523 5244 9.9964e-06 0.23563 615 9.9371e-06

50 QCAM 0.066155 109 9.7182e-06 2.986 5515 9.9972e-06 0.74652 1311 9.9793e-06

50 SSORM 5.0893 324 9.6978e-06 14.8037 3479 9.9831e-06

70 RDOM 0.32 87 9.242e-06 7.3496 8227 9.9949e-06 0.63956 761 9.9617e-06

70 DOM 0.39788 107 8.4574e-06 8.809 9874 9.9895e-06 0.78244 915 9.8874e-06

70 QCAM 0.2841 209 9.497e-06 1.8451 1960 9.9631e-06

70 SSORM 41.9837 598 9.7495e-06 49.422 5168 9.9882e-06
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Table 4. Numerical results for examples with α = 0.75, β = 1

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.003761 21 9.0596e-06 0.53547 2143 9.995e-06 4.2988 1850 9.9512e-06

30 DOM 0.0054731 28 7.4192e-06 0.56104 2573 9.9862e-06 0.095181 362 9.9532e-06

30 QCAM 0.029164 44 7.0581e-06 0.33128 2090 9.9948e-06 0.14803 681 9.8875e-06

30 SSORM 0.26912 143 9.3089e-06 4.2988 1850 9.9512e-06

50 RDOM 0.021068 52 8.1887e-06 2.4537 5562 9.986e-06 0.29372 568 9.9481e-06

50 DOM 0.027769 64 9.8371e-06 2.8819 6675 9.9957e-06 0.35372 683 9.9213e-06

50 QCAM 0.063551 109 9.7182e-06 2.986 5515 9.9972e-06 0.52747 1311 9.9793e-06

50 SSORM 3.9336 324 9.6978e-06 19.7413 3479 9.9831e-06

70 RDOM 0.083615 97 9.6837e-06 9.2166 8333 9.9975e-06 0.87146 846 9.856e-06

70 DOM 0.10342 119 8.9141e-06 10.9394 9009 9.9980e-06 1.0559 1016 9.9103e-06

70 QCAM 0.27784 209 9.497e-06 2.3016 1960 9.963e-06

70 SSORM 17.4414 598 9.7495e-06 64.0521 5168 9.9882e-06

Table 5. Numerical results for examples with α = 0, β = 0.25

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.0097478 41 8.4529e-06 0.37057 1604 9.9869e-06 0.10806 529 9.8507e-06

30 DOM 0.0099201 44 6.487e-06 0.44684 1926 9.9877e-06 0.1284 636 9.8622e-06

30 QCAM 0.01749 44 7.0581e-06 0.35256 2090 9.9948e-06 0.14223 681 9.8875e-06

30 SSORM 0.090516 143 7.7415e-06 3.3864 1850 9.9512e-06

50 RDOM 0.049363 87 8.736e-06 2.7401 4168 9.9936e-06 0.51713 998 9.9566e-06

50 DOM 0.059115 106 9.5432e-06 2.9104 5003 9.9881e-06 0.6235 1199 9.9412e-06

50 QCAM 0.063078 109 9.7182e-06 2.2163 5515 9.9972e-06 0.69906 1311 9.9793e-06

50 SSORM 4.888 324 9.6978e-06 19.6991 3479 9.9831e-06

70 RDOM 0.18627 166 9.1805e-06 9.2233 7851 9.9888e-06 1.5659 1485 9.9284e-06

70 DOM 0.22337 201 9.4063e-06 16.2836 9422 9.9927e-06 1.8719 1783 9.9457e-06

70 QCAM 0.9262 209 9.497e-06 2.3514 1960 9.9631e-06

70 SSORM 47.9849 598 9.7495e-06 63.0641 5168 9.9882e-06

Table 6. Numerical results for examples with α = 0, β = 0.5

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.0065586 27 6.9975e-06 0.31866 1401 9.9522e-06 0.08933 408 9.8883e-06

30 DOM 0.008244 35 6.2202e-06 0.38138 1682 9.9819e-06 0.10436 491 9.8534e-06

30 QCAM 0.01749 44 7.0581e-06 0.35256 2090 9.9948e-06 0.14223 681 9.8875e-06

30 SSORM 0.090516 143 7.7415e-06 3.3864 1850 9.9512e-06

50 RDOM 0.03668 68 7.6513e-06 2.0939 3639 9.9936e-06 0.40111 770 9.9159e-06

50 DOM 0.044844 83 9.0989e-06 2.5175 4368 9.9926e-06 0.48167 925 9.9497e-06

50 QCAM 0.063078 109 9.7182e-06 2.2163 5515 9.9972e-06 0.69906 1311 9.9793e-06

50 SSORM 4.888 324 9.6978e-06 19.6991 3479 9.9831e-06

70 RDOM 0.14666 128 9.9616e-06 7.7764 6854 9.9939e-06 1.189 1145 9.9596e-06

70 DOM 0.17186 156 9.5452e-06 9.3439 8226 9.9929e-06 1.435 1375 9.9821e-06

70 QCAM 0.9262 209 9.497e-06 2.3514 1960 9.9631e-06

70 SSORM 47.9849 598 9.7495e-06 63.0641 5168 9.9882e-06

Note that:

• In Tables 1-4, results are presented for Examples 1, 2 and 3, in which β = 1 is fixed and α is variable.
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Table 7. Numerical results for examples with α = 0, β = 0.75

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.0048088 20 9.2545e-06 0.29468 1269 9.9813e-06 0.068021 309 9.7821e-06

30 DOM 0.0060748 27 6.6341e-06 0.34602 1524 9.9824e-06 0.082215 372 9.8034e-06

30 QCAM 0.01749 44 7.0581e-06 0.35256 2090 9.9948e-06 0.14223 681 9.8875e-06

30 SSORM 0.090516 143 7.7415e-06 3.3864 1850 9.9512e-06

50 RDOM 0.02849 51 9.5379e-06 1.9372 3297 9.9819e-06 0.30478 583 9.858e-06

50 DOM 0.036185 64 7.8906e-06 2.3252 3957 9.9983e-06 0.46312 701 9.8325e-06

50 QCAM 0.063078 109 9.7182e-06 2.2163 5515 9.9972e-06 0.69906 1311 9.9793e-06

50 SSORM 4.888 324 9.6978e-06 19.6991 3479 9.9831e-06

70 RDOM 0.12552 98 8.3207e-06 7.0736 6209 9.9953e-06 0.88752 867 9.9049e-06

70 DOM 0.13211 119 9.3644e-06 8.553 7452 9.9942e-06 1.0718 1041 9.9822e-06

70 QCAM 0.9262 209 9.497e-06 2.3514 1960 9.9631e-06

70 SSORM 47.9849 598 9.7495e-06 63.0641 5168 9.9882e-06

Table 8. Numerical results for examples with α = 0.1, β = 0.9

Ex 1 Ex 2 Ex 3

m method CPU IT error CPU IT error CPU IT error

30 RDOM 0.005064 18 4.6228e-06 0.25443 1290 9.9895e-06 0.056361 268 9.6315e-06

30 DOM 0.0061406 24 6.1046e-06 0.27217 1550 9.9283e-06 0.069226 322 9.9604e-06

30 QCAM 0.01749 44 7.0581e-06 0.35256 2090 9.9948e-06 0.14223 681 9.8875e-06

30 SSORM 0.090516 143 7.7415e-06 3.3864 1850 9.9512e-06

50 RDOM 0.026595 45 7.4556e-06 1.4808 3351 9.9852e-06 0.27769 505 9.8882e-06

50 DOM 0.032598 56 8.1305e-06 1.7957 4022 9.9957e-06 0.32521 607 9.9399e-06

50 QCAM 0.063078 109 9.7182e-06 2.2163 5515 9.9972e-06 0.69906 1311 9.9793e-06

50 SSORM 4.888 324 9.6978e-06 19.6991 3479 9.9831e-06

70 RDOM 0.14619 85 8.8737e-06 6.2893 6311 9.9865e-06 0.77935 751 9.9535e-06

70 DOM 0.12361 104 9.0912e-06 8.6406 7574 9.9914e-06 0.95427 903 9.8783e-06

70 QCAM 0.9262 209 9.497e-06 2.3514 1960 9.9631e-06

70 SSORM 47.9849 598 9.7495e-06 63.0641 5168 9.9882e-06

• In Tables 5-7, numerical results are shown for three examples in which α = 0 is fixed and β is variable.

• In Table 8, the results are shown for three examples in which α and β are not one and zero.

• The parameters involving QCAM and RDOM were chosen to be the experimentally found optimal parameters. Additionally,

in the SSORM, w = 0.2.

As a result of the provided tables, it is possible to evaluate the performance of the methods as follows.

1. CPU (time in seconds): For various parameters of α and β, the presented methods remain superior as the problem size

increases. As a result, new methods for solving examples converge faster than SSORM and QCAM in all cases. Using

β = 1 as a fixed value and α as a variable, Tables 1-4 illustrate that results are improved when α is decreased. In Tables

5-7, it is shown that by increasing β, the results are improved if α is set to 0.

2. IT (iteration steps): As in the previous item, the new method has fewer iteration steps than the old method, and this

advantage is maintained by increasing the size of the problem.

3. Error (||Ax − b||2 < 10−5): It has been observed that the performance of the methods is almost similar with regard to

error.

4. As far as convergence results are concerned, the numerical findings in Ex 2 demonstrate that the new methods are

convergent, whereas the old methods are divergent.

Overall, it can be concluded that the new methods outperform the mentioned techniques in terms of CPU time and iteration

steps under certain conditions.
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5. Conclusions

For solving a linear system of equations Ax = b, two-step diagonal and off-diagonal multisplitting (DOM) methods, as well as

relaxed DOM (RDOM) methods are presented. Under the assumption that the coefficient matrix is an H-matrix, the convergence

properties of these methods have been discussed. A comparison of the DOM and RDOM methods to existing approaches (QCAM

and SSORM) is demonstrated through numerical examples. The applicability of these approaches in different contexts can also

be examined, and their performance can be improved through algorithmic improvements.
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