- Adobor, H., & McMullen, R. S. (2018). Supply chain resilience: a dynamic and multidimensional approach. International Journal of Logistics Management, 29(4), 1451–1471.
- Ali, Md. R., Nipu, S. Md. A., & Khan, S. A. (2023). A decision support system for classifying supplier selection criteria using machine learning and random forest approach. Decision Analytics Journal, 7,
- Alpaydin, E. (2020). Introduction to machine learning. MIT press.
- Atalay, M., & Çelik, E. (2017). Büyük veri analizinde yapay zekâ ve makine öğrenmesi uygulamalari-artificial intelligence and machine learning applications in big data analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22), 155–172.
- Bai, C., Rezaei, J., & Sarkis, J. (2017). Multicriteria green supplier segmentation. IEEE Transactions on Engineering Management, 64(4), 515–528.
- Baryannis, G., Dani, S., & Antoniou, G. (2019). Predicting supply chain risks using machine learning: The trade-off between performance and interpretability. Future Generation Computer Systems, 101, 993–1004.
- Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, 57(7), 2179–2202.
- Brusset, X., & Teller, C. (2017). Supply chain capabilities, risks, and resilience. International Journal of Production Economics, 184, 59–68.
- Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 49, 86–97.
- Echefaj, K., Charkaoui, A., Cherrafi, A., Garza-Reyes, J. A., Khan, S. A. R., & Chaouni Benabdellah, A. (2023). Sustainable and resilient supplier selection in the context of circular economy: an ontology-based model. Management of Environmental Quality: An International Journal, 34(5), 1461–1489.
- Eyika Gaida, I. W., Mittal, M., & Yadav, A. S. (2022). Optimal Strategy for Supplier Selection in a Global Supply Chain Using Machine Learning Technique. International Journal of Decision Support System Technology, 14(1), 1–13.
- Geetha, T. V, & Sendhilkumar, S. (2023). Machine Learning: Concepts, Techniques and Applications. CRC Press.
- Glock, C. H., Grosse, E. H., & Ries, J. M. (2017). Reprint of “Decision support models for supplier development: Systematic literature review and research agenda.” International Journal of Production Economics, 194, 246–260.
- Guo, X., Yuan, Z., & Tian, B. (2009). Supplier selection based on hierarchical potential support vector machine. Expert Systems with Applications, 36(3), 6978–6985.
- Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16–24.
- Hosseini, S., & Khaled, A. Al. (2019). A hybrid ensemble and AHP approach for resilient supplier selection. Journal of Intelligent Manufacturing, 30, 207–228.
- Hosseini, S., Morshedlou, N., Ivanov, D., Sarder, M. D., Barker, K., & Al Khaled, A. (2019). Resilient supplier selection and optimal order allocation under disruption risks. International Journal of Production Economics, 213, 124–137.
- Hurwitz, J., & Kirsch, D. (2018). Machine learning for dummies. IBM Limited Edition, 75.
- Islam, S., Amin, S. H., & Wardley, L. J. (2024). A supplier selection & order allocation planning framework by integrating deep learning, principal component analysis, and optimization techniques. Expert Systems with Applications, 235,
- Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10), 2904–2915.
- Jafarnezhad Chaghooshi, A., Kazemi, A., & Arab, A. (2016). Identification and Prioritization of Supplier’s Resiliency Evaluation Criteria Based on BWM. The Journal of Industrial Management Perspective, 6(3), 159-186. (In Persian)
- Jiang, W., & Liu, J. (2018). Inventory financing with overconfident supplier based on supply chain contract. Mathematical Problems in Engineering, 2018.
- Kamalahmadi, M., & Parast, M. M. (2017). An assessment of supply chain disruption mitigation strategies. International Journal of Production Economics, 184, 210–230.
- Khan, M. M., Bashar, I., Minhaj, G. M., Wasi, A. I., & Hossain, N. U. I. (2023). Resilient and sustainable supplier selection: an integration of SCOR 4.0 and machine learning approach. Sustainable and Resilient Infrastructure, 8(5), 453–469
- Kumar, S., Dixit, A. K., & Akarte, M. (2023). Machine Learning Based Decision Support System for Resilient Supplier Selection. In R. Misra, N. Kesswani, M. Rajarajan, B. Veeravalli, I. Brigui, A. Patel, & T. N. Singh (Eds.), Advances in Data Science and Artificial Intelligence (pp. 33–43). Springer International Publishing.
- Kιran, M. S., Eșme, E., Torğul, B., & Paksoy, T. (2020). Supplier Selection with Machine Learning Algorithms. In Logistics 4.0 (pp. 103–125). CRC Press.
- Lin, J., & Lanng, C. (2020). Here’s how global supply chains will change after COVID-19. World Economic Forum .https://www.weforum.org/agenda/2020/05/ this-is-what-global-supply-chains-will-look-like-after-covid-19/
- Mirkouei, A., & Haapala, K. R. (2014). Integration of machine learning and mathematical programming methods into the biomass feedstock supplier selection process.
- Mueller, J. P., & Massaron, L. (2021). Machine learning for dummies. John Wiley & Sons.
- Pentakalos, O. (2019). Introduction to machine learning. Proc. C. Impact
- Rabieh, M., Azar, A., Modarres Yazdi, M., & Fetanat Fard Haghighi, M. (2011). Designing a Multi-Objective Resource-Based Mathematical Modeling: An Approach to Supply Chain Risk Reduction (Case Study: Iran Khodro Supply Chain). The Journal of Industrial Management Perspective, 1(1), 57-77. (In Persian)
- Rajesh, R., & Ravi, V. (2015). Supplier selection in resilient supply chains: a grey relational analysis approach. Journal of Cleaner Production, 86, 343–359.
- Ravanestan, K., Aghajani, H., Safaei Ghdikolaei, A., & Yahyazadefar, M. (2017). Determining and Weighting Resilience Strategies in the Iran Khodro Supply Chain. The Journal of Industrial Management Perspective, 7(1), 145-172. (In Persian)
- Ribeiro, J. P., & Barbosa-Povoa, A. (2018). Supply Chain Resilience: Definitions and quantitative modelling approaches–A literature review. Computers & Industrial Engineering, 115, 109–122.
- Roberta Pereira, C., Christopher, M., & Lago Da Silva, A. (2014). Achieving supply chain resilience: the role of procurement. Supply Chain Management: An International Journal, 19(5/6), 626–642.
- Shashi, Centobelli, P., Cerchione, R., & Ertz, M. (2020). Managing supply chain resilience to pursue business and environmental strategies. Business Strategy and the Environment, 29(3), 1215–1246.
- Simchi-Levi, D., Schmidt, W., Wei, Y., Zhang, P. Y., Combs, K., Ge, Y., Gusikhin, O., Sanders, M., & Zhang, D. (2015). Identifying risks and mitigating disruptions in the automotive supply chain. Interfaces, 45(5), 375–390.
- Tavana, M., Fallahpour, A., Di Caprio, D., & Santos-Arteaga, F. J. (2016). A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection. Expert Systems with Applications, 61, 129–144.
- Tirkolaee, E. B., Sadeghi, S., Mooseloo, F. M., Vandchali, H. R., & Aeini, S. (2021). Application of Machine Learning in Supply Chain Management: A Comprehensive Overview of the Main Areas. Mathematical Problems in Engineering, 2021,
- Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 79, 22–48.
- Valluri, A., & Croson, D. C. (2005). Agent learning in supplier selection models. Decision Support Systems, 39(2), 219–240
- Zhao, L., Qi, W., & Zhu, M. (2021). A Study of Supplier Selection Method Based on SVM for Weighting Expert Evaluation. Discrete Dynamics in Nature and Society.
|