Determinant and rank functions in semisimple pivotal Ab-categories | ||
Categories and General Algebraic Structures with Applications | ||
مقاله 4، دوره 19، شماره 1، آبان 2023، صفحه 47-80 اصل مقاله (620.32 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.48308/cgasa.19.1.47 | ||
نویسندگان | ||
Khalid Draoui* ؛ Hanan Choulli؛ Hakima Mouanis | ||
Mathematical Sciences and Applications Laboratory, Department of Mathematics, Faculty of Sciences Dhar Al Mahraz, P. O. Box 1796, University Sidi Mohamed Ben Abdellah Fez, Morocco. | ||
چکیده | ||
We investigate and generalize quantum determinants to semisimple spherical and pivotal categories. It is well known that traces are preserved by strong tensor functors; we show on one hand that in fact, weaker conditions on a functor are sufficient to continue preserving traces. On the other hand, we prove that these determinants are well-behaved under strong tensor functors. Further, we introduce a notion of domination rank for objects of a semisimple pivotal category and prove similar properties of the ordinary case. Furthermore, we expand the determinantal and McCoy ranks to introduce a morphism quantum rank function on a semisimple pivotal category. | ||
کلیدواژهها | ||
Monoidal category؛ strong tensor functor؛ quantum trace؛ McCoy rank؛ quantum determinants | ||
مراجع | ||
[1] Brown, W.C., “Matrices Over Commutative Rings”, Marcel Dekker, New York, NY, USA, 1993.
[2] Choulli, H., Draoui, K., and Mouanis, H., Quantum determinants in ribbon category, Categ. Gen. Algebr. Struct. Appl. 17(1) (2022), 203-232.
[3] Chuang, J. and Lazarev, A., Rank functions on triangulated categories, J. Reine Angew. Math. 781 (2021), 127-164.
[4] Day, B. and Pastro, C., Note on Frobenius monoidal functors, New York J. Maths. 14 (2008), 733-742.
[5] Geer, N., Kujawa, J., and Patureau-Mirand, B., Generalized trace and modified dimension functions on ribbon categories, Sel. Math. New Ser. 17 (2010), 453-504.
[6] Geer, N., Kujawa, J., and Patureau-Mirand, B., M-traces in (non unimodular) pivotal categories, Algebr. Represent. Theor. 25 (2021), 759–776.
[7] Geer, N., Patureau-Mirand, B., and Virelizer, A., Traces on ideals in pivotal categories, Quantum Topol. 4(1) (2013), 91-124.
[8] Karantha, M.P., Nandini, N., and Shenoy, D.P., Rank and dimension functions, Electron. J. Linear Algebra, 29 (2015), 144-155.
[9] Kassel, C., “Quantum Groups”, Gradute Texts in Mathematics, 155, Springerverlag, 1995.
[10] Mac-Lane, S., “Categories for the Working Mathematician”, Graduate Texts in Mathematics, 5, Springer-verlag, 2013.
[11] Ngoc Phu, H. and Huyen Trang, N., Generalization of traces in pivotal categories, J. Sci Technol. 17(4) (2019), 20-29.
[12] Turaev, V.G., “Quantum Invariants of Knots and 3-manifolds”, Berlin, Boston: De Gruyter, 2016.
[13] Turae, V.G. and Wenzl, H., Semisimple and modular categories from link invariants, Math. Ann. 309 (1997), 411-461.
[14] Turaev, V.G. and Virelizier, A., “Monoidal Categories and Topological Field Theory”, Progress in Mathematics, 322, Birkhuser/Springer, 2017. | ||
آمار تعداد مشاهده مقاله: 235 تعداد دریافت فایل اصل مقاله: 458 |