A little more on ideals associated with sublocales | ||
Categories and General Algebraic Structures with Applications | ||
مقاله 8، دوره 20، شماره 1، فروردین 2024، صفحه 175-200 اصل مقاله (589.79 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.48308/cgasa.2023.234093.1456 | ||
نویسندگان | ||
Oghenetega Ighedo* 1؛ Grace Wakesho Kivunga2؛ Dorca Nyamusi Stephen3 | ||
1Department of Mathematics, Chapman University, P.O. Box 92866, California, U.S.A. | ||
2Department of Mathematical Sciences, University of South Africa, P.O. Box 392, 0003 Pretoria, South Africa. | ||
3Deparment of Mathematics and Physics, Technical University of Mombasa, P.O. Box 90420-80100, Mombasa, Kenya. | ||
چکیده | ||
As usual, let $\mathcal RL$ denote the ring of real-valued continuous functions on a completely regular frame $L$. Let $\beta L$ and $\lambda L$ denote the Stone-\v{C}ech compactification of $L$ and the Lindel\"of coreflection of $L$, respectively. There is a natural way of associating with each sublocale of $\beta L$ two ideals of $\mathcal RL$, motivated by a similar situation in $C(X)$. In~\cite{DS1}, the authors go one step further and associate with each sublocale of $\lambda L$ an ideal of $\mathcal RL$ in a manner similar to one of the ways one does it for sublocales of $\beta L$. The intent in this paper is to augment~\cite{DS1} by considering two other coreflections; namely, the realcompact and the paracompact coreflections.\\ We show that $\boldsymbol M$-ideals of $\mathcal RL$ indexed by sublocales of $\beta L$ are precisely the intersections of maximal ideals of $\mathcal RL$. An $\boldsymbol{M}$-ideal of $\mathcal RL$ is \emph{grounded} in case it is of the form $\boldsymbol{M}_S$ for some sublocale $S$ of $L$. A similar definition is given for an $\boldsymbol{O}$-ideal of $\mathcal RL$. We characterise $\boldsymbol M$-ideals of $\mathcal RL$ indexed by spatial sublocales of $\beta L$, and $\boldsymbol O$-ideals of $\mathcal RL$ indexed by closed sublocales of $\beta L$ in terms of grounded maximal ideals of $\mathcal RL$. | ||
کلیدواژهها | ||
Frame؛ locale؛ sublocale؛ pointfree function ring؛ Lindel\"{o}f؛ realcompact؛ paracompact | ||
مراجع | ||
[1] Ball, R.N. and Walters-Wayland, J., C- and C∗-quotients in pointfree topology, Dissert. Math. (Rozprawy Mat.) 412 (2002), 62 pp. [2] Banaschewski, B., “The real numbers in pointfree topology”, Textos de Matem´atica S´erie B, No. 12, Departamento de Matem´atica da Universidade de Coimbra, 1997. [3] Banaschewski, B. and Gilmour, C., Stone– ˇ Cech compactification and dimension theory for regular σ-frames, J. Lond. Math. Soc. 39(2) (1989), 1-8. [4] Banaschewski, B. and Gilmour, C., Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin 37 (1996), 579-589. [5] Banaschewski, B. and Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Structures 9 (2001), 395-417. [6] Banaschewski, B. and Pultr, A., Paracompactness revisited, Appl. Categ. Structures 1 (1993), 181-190. [7] Dube, T., Notes on pointfree disconnectivity with a ring-theoretic slant, Appl. Categ. Structures 18 (2010), 55-72. [8] Dube, T., A broader view of the almost Lindel¨of property, Algebra Universalis 65 (2011), 63–276. [9] Dube, T., Concerning P-sublocales and disconnectivity, Appl. Categ. Structures 27 (2019), 365-383. [10] Dube, T., On the maximal regular ideal of pointfree function rings, and more, Topology Appl. 273 (2020), 106960. [11] Dube, T. and Stephen, D.N., On ideals of rings of continuous functions associated with sublocales, Topology Appl. 284 (2020), 107360. [12] Dube, T. and Stephen, D.N., Mapping ideals to sublocales, Appl. Categ. Structures 29 (2021), 747-772. [13] Gillman, L. and Jerison, M., “Rings of Continuous Functions”, Van Nostrand, Princeton, 1960. [14] Johnson, D.G. and Mandelker, M., Functions with pseudocompact support, Gen. Topology Appl. 3 (1971), 331-338. [15] Johnstone, P.T., “Stone Spaces”, Cambridge University Press, 1982. [16] Madden, J. and Vermeer, J., Lindel¨of locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. [17] Picado, J. and Pultr, A., “Frames and Locales: topology without points”, Frontiers in Mathematics, Springer, 2012 | ||
آمار تعداد مشاهده مقاله: 170 تعداد دریافت فایل اصل مقاله: 496 |