پایش تغییرات زمانی کاربری اراضی شهرستان خداآفرین و کلیبر با استفاده از فناوری سنجش از دور | ||
فصلنامه علوم محیطی | ||
مقاله 4، دوره 22، شماره 2، 1403، صفحه 225-244 اصل مقاله (1.94 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.48308/envs.2023.1341 | ||
نویسندگان | ||
علی خدائی* 1؛ رحمان زندی2 | ||
1گروه علوم و مهندسی محیط زیست، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران | ||
2گروه جغرافیای طبیعی، دانشکده علوم جغرافیایی و برنامه ریزی، دانشگاه اصفهان، اصفهان، ایران | ||
چکیده | ||
سابقه و هدف: بررسی تغییرات زمانی کاربری اراضی، یکی از مهمترین جنبههای مدیریت منابع طبیعی و بازنگری در تغییرات محیطی است. با افزایش مناطق شهری و روستای و ملزومات زندگی بشر، تغییراتی در سطح زمین ایجاد میشود این تغییرات، در اثر تقابل نیازهای همیشگی جوامع انسانی و محیطی با زمین ایجاد میشود. در تحقیق حاضر با استفاده از تکنیک سنجشازدور، پایش تغییرات سطح زمین در شهرستان های خداآفرین و کلیبر با استفاده از فناوری سنجش از دور در طی دوره ۲0 ساله (۲۰۰۰ -۲۰۲0) بررسی قرار گرفت. مواد و روش ها: جهت انجام تحلیلهای آماری و بصری از تصاویر سنجنده مادیس که بر روی دو ماهواره ی ترا و آکووا نصب می باشد، برای بازه ی زمانی سال 2000 تا 2020 میلادی به روش طبقه بندی و استخراج پوشش سطح زمین پرداخته شد. از روش طبقه بندیIGBP در 17 کلاس جهت طبقه بندی کاربری اراضی استفاده شده است. سپس بر اساس مدل و روش طبقه بندی در محیط نرم افزار Arc GIS پردازش شدند. میزان مساحت هر یک از کاربری در هر سال محاسبه گردید. عوامل طبیعی موثر بر تغییرات کاربری اراضی از دادههای روزانه بارش برای دوره ی مورد بررسی استفاده گردید. بر اساس این مقادیر روند تغییرات بارش و همچنین خشکسالی بر حسب شاخص بارش استاندارد SPI در محیط نرمافزار ترسیم گردید. نتایج و بحث: 20 تصویر سنجنده مادیس برای دورهی مورد بررسی، تجزیه و تحلیل گردیدند و نقشه های سالانه و نمودار روند تغییرات هر یک از کاربری ها ترسیم گردید. پوشش کاربری سطح زمین در سالهای 2001، 2002 و 2003 نشان داد سال 2001 بیشترین مساحت مربوط به پوشش کشاورزی و زارعی و سپس مرتع میباشد همچون سال 2001 سال 2002 تا 2003 نیز همین روند ادامه پیدا کرده است. در این سال ها روند تخریب جنگل و تغییر کاربری از جنگلی به مرتع و سپس کشاورزی شروع شده است. از سال های 2004 تا 2006 پوشش نامطلوب بایر قابل مشاهده است. در سال های 2007 تا 2009 با توجه به سدسازی؛ پوشش آب و سطح زیر کشت و کشت آبی افزایش یافته و در سال های 2010 تا 2012 شهر و انسان ساخت با افزایش چشمگیر دیده می شود و از سال 2012 تا 2020 روند تخریب جنگلها و تبدیل آنها به مراتع و سپس زمین های کشاورزی در سال های پایانی دوره مورد بررسی نیز کاملا مشهود است و همچنین با بررسی عوامل طبیعی میزان بارش و خشکسالی در طی دوره ی 20 ساله روند نزولی داشته است. نتیجه گیری: نتایج نشان می دهد که مساحت پوشش جنگلی و درختچه ای کاهش یافته و در عوض پوشش بایر، آب، مرتع و کشاورزی افزایش چشمگیری داشته است، البته افزایش پوشش آب به علت سدسازی های صورت گرفته در منطقه ی مورد مطالعه می شود. همچنین نتایج حاصل از بررسی میزان بارش و خشکسالی نشان می دهد که روند بارش نزولی بوده و خشکسالی های نسبتا شدیدی در منطقه اتفاق افتاده است. | ||
کلیدواژهها | ||
پایش سطح زمین؛ مادیس؛ سنجش از دور؛ خداآفرین – کلیبر | ||
عنوان مقاله [English] | ||
Monitoring Temporal Changes of Land Use in Khoda Afarin and Kalibar Cities Using Remote Sensing Technology | ||
نویسندگان [English] | ||
Ali Khodaie1؛ Rahman Zandi2 | ||
1Department of Environmental Sciences and Engineering, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran | ||
2Department of Natural Geography, Faculty of Geographical Sciences and Planning, Isfahan University, Isfahan, Iran | ||
چکیده [English] | ||
Introduction: Investigating changes in land cover is one of the most important aspects of natural resource management and environmental changes. With the increase of urban and rural areas and the necessities of human life, changes are made on the surface of the earth. These changes are caused by the conflict between the needs of human societies and environmental constraints on Earth. In this research, using remote sensing techniques, the monitoring of land surface changes in Khoda Afarin and Kalibar cities was investigated using remote sensing technology during a period of 20 years (2000-2020). Material and Methods: In order to perform statistical and visual analysis of MODIS sensor images installed on Terra and Aqua satellites, for the period of 2000 to 2020, the method of classification and extraction of the earth's surface cover was studied. The IGBP classification method was used in 17 classes to classify land use. Then, based on the model and classification method, they were processed in the Arc GIS software environment. The area of each land use was calculated in each year. Natural factors affecting land use changes were used from the daily rainfall data for the studied period. Based on these values, the trend of changes in precipitation and drought was drawn according to the SPI standard precipitation index in the software environment. Results and Discussion: Twenty MODIS sensor images were analyzed for the period under study and annual maps and change trend charts of each land use were drawn. The land use coverage in the years 2001, 2002 and 2003 showed that the largest area was related to agriculture in 2001, followed by pasture. This trend continued from 2002 to 2003.. In these years, the process of forest destruction and change of use from forest to pasture and then agriculture has started. From 2004 to 2006, Bayer's unfavorable coverage is visible. In the years 2007 to 2009, regarding dam construction the water coverage and the area under cultivation increased and in the years 2010 to 2012, the city and man-made buildings increased significantly, and from 2012 to 2020, the process of destroying forests and turning them into pastures and then agricultural lands in the year. The end of the investigated period is also quite evident, and also by examining the natural factors, the amount of rainfall and drought during the 20-year period has had a downward trend. Conclusion: The results show that the area of forest and shrub cover has decreased, and instead, there has been a significant increase in barren, water, pasture and agricultural cover, although the increase in water cover is due to the construction of dams in the study area. Also, the results of examining the amount of precipitation and drought show that the trend of precipitation is decreasing and relatively severe droughts have occurred in the region. | ||
کلیدواژهها [English] | ||
Earth surface monitoring, MODIS, remote sensing, Khodafarin - Kalibar | ||
مراجع | ||
Azmudeh, A., Kavian, A., Soleimani, K. and Vahabzadeh, Q., 1994. Comparison of runoff and erosion rates in soils covered by forest, agricultural and garden uses using a rain simulator. Ab and Khak Journal. 24(3). (In Persian). https://doi.org/10.22067/jsw.v0i0.3620 Barati, B., Jahani, A., Zebardast, L. and Rayegani, B., 2017. "Integration assessment of the protected areas using landscape ecological approach (Case study: Kolah Ghazy national park and Wildlife Refuge). Journal of Town and Country Planning. 9 (1), 153-168. (In Persian). https://doi.org/10.22059/jtcp.2017.61412 Dadhich, P.N. and Hanaoka, S., 2011. Spatio-temporal urban growth modeling of Jaipur, India. Journal of Urban Technology. 18 (3), 45-65. https://doi.org/10.1080/10630732.2011.615567 Fatemi Talab, S.R., Maadani Pour, M. and Hashemi, S.A., 2014. Estimation of changes in the cover plant of Rudsar forests using classification of artificial neural network and maximum probability. Journal of Rs and GIS in Natural Resources. 6(2). (In Persian). https://sanad.iau.ir/Journal/girs/Article/903053 Forman, R. T.T and Godron, M., 1986. Landscape ecology, New York: Wiley. Ghasemzadeh, B., Pazhuhan, M., Hataminejad, H. and Sajjadzadeh, H., 2014. Impact of Zayandeh Rud drought on social interactions and populated spaces in Isfahan city, Journal of Environmental Studies. 40 (2), 481-498. (In Persian). https://doi.org/10.22059/jes.2014.51214 Gopal, S. and Woodcock, C., 1996. Remote sensing of forest change using artificial neural network, IEEE Transactions of Geosciences and Remote Sensing. 34 (2), 398-404. https://doi.org/10.1109/36.485117 Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T. and Hokao, K., 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling. 222 (20-22), 3761-3772. https://doi.org/10.1016/j.ecolmodel.2011.09.009 Hamad, R., Balzter, H. and Kolo, K., 2017. Multi-criteria assessment of land cover dynamic changes in halgurd sakran national park (HSNP), kurdistan region of Iraq, using remote sensing and GIS, Land. 6 (1), 18-32. https://doi.org/10.3390/land6010018 Huang, Y., Yang, B., Wang, M., Liu, B. and Yang, X., 2020. Analysis of the future land cover change in Beijing using CA–Markov chain model. Environmental Earth Sciences. 79 (2), 60. https://doi.org/10.1007/s12665-019-8785-z Jafarnia, Sh., Oladi, J., Hoojati, S.M. and Mirakhorloo, Kh., 2016. Status and change detection of Mangrove forest in Qeshm Island using satellite imagery from 1988 to 2008, J. Env. Sci. Tech. 18(1). (In Persian) https://sanad.iau.ir/Journal/jest/Article/839768 Jokar sarhangi, A. and Gholami, M., 1992. The effect of land use change on increasing the rate of erosion and sediment production and suggesting suitable use in the Zaram River basin of Mazandaran using geographic information system. Geographical Research Quarterly. 3-23. (In Persian) https://doi.org/ 10.22067/GEOEH.2022.74281.1145 Jordan, A. L., Martinez, Z. and Bellinfante, N., 2008. Heterogeneity in soil hydrological response from different land cover types in southern Spain. Catena.74,137–143. https://doi.org/10.1002/esp.1890 Karami, A. and Feghhi, J., 2012. Controlling and comparison of north and south Zagros land use using landscape ecology approach ,Case study: Provinces of Kurdistan and Kohgiloyeh and Boyer Ahmad, Journal of Town and Country Planning. 4 (6), 5-34. (In Persian). https://doi.org/ 10.22059/JTCP.2012.28787 Kelarestaghi, A., Ahmadi, H., Jafari, M. and Ghodoosi, J., 2008. Predicting Possible Changes in Forest Use to Deforestation Using Probabilistic Modeling in Frame Sahra WatershedMazandaran Province, Journal of Research and Construction. 21(3), 52-63. (In Persian). htpps://doi.org/ 10.30466/JFRD.2021.53873.1572 Key, J.A. and Schweiger, A.J., 1989. Classification of merged AVHRR and SMMR arctic data with neural networks, Photogrammetric Engineering and Remote Sensing. 55, 1331- 1338. https://mpra.ub.uni-muenchen.de/id/eprint/77811 Khodaie, A. and Zandi, R., 2023. Monitoring changes in vegetation cover and its relationship with surface temperature and land use in Khodaafrin and Kalibar cities using remote sensing technology, Journal of natural environment. (In Persian). https://doi.org/ 10.22059/JNE.2023.365834.2602 Knorn, J., Rabe, A., Radeloff, V.C., Kuemmerle, T., Kozak, J. and Hostert, P., 2009. Land cover mapping of largeareas using chain classification of neighboring Landsat satellite images, Remote Sens, Environ. 113, 957- 964. https://doi.org/ DOI:10.1016/j.rse.2009.01.010 Lu, D., Mausel, P., Brondizio, E. and Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing. 25(12), 2365- 2407. https://doi.org/10.1080/0143116031000139863 Masoumi, M.T. and Moshiri, S.R., 2014. Using landscape spatial metrics and remote sensing data for spatio-temporal urban land use/cover changes analysis, A case study of Ardebil municipality, Journal of Geographical Space. 14 (45), 176-196. (In Persian). http://geographical-space.iau-ahar.ac.ir/article-1-986-en.html Matsushita, B., Xu, M. and Fukushima, T., 2006. Characterizing changes in landscape structure in the lake Kasumigaura basin, Japan using a high quality GIS dataset, Journal of Landscape and Urban Planning. 78 (3), 241-250. https://doi.org/10.1016/j.landurbplan.2005.08.003 McGarigal, K., Cushman, S.A., Neel, M.C. and Ene, E., 2002. Fragstats: Spatial pattern analysis program for categorical maps, Oregon State University, Corvallis. Mirzaei Mossivand, A., Ghorbani, A. and Keivan Behjou, F., 2018. Land use-cover change detection using landsat and IRS imagery: A case study, Khalkhal county, Journal of Geographical Space. 17 (60), 101-116. (In Persian). http://geographical-space.iau-ahar.ac.ir/article-1-1670-en.html Othman, A. A., Al-Saady, Y. I., Al-Khafaji, A.K. and Gloaguen, R., 2014. Environmental change detection in the central part of Iraq using remote sensing data and GIS. Arabian Journal of Geosciences. 7 (3), 1017-1028. Pakniat, D. and Rahdari, V., 2012. Detection of land use change and land cover in the Masjid Oblast in the years 1978 to 2006 using GIS and RS, The First International Conference on Land Ecology. 29-30 Oct. (On line), (In Persian). http://doi.org.10.1007/s12517-013-0870-0 Prestele, R., Alexander, P., Rounsevell, M. D., Arneth, A., Calvin, K., Doelman, J. and Havlik, P., 2016. Hotspots of uncertainty in land‐use and land‐cover change projections: a global‐scale model comparison. Global Change Biology. 22 (12), 3967-3983. https://doi.org/10.1111/gcb.13337 Rajesh, B. and Yuji, M., 2006. Land use change analysis using remote sensing and GIS: A Case Study of Kathmandu Metropolitan, Nepal. Research Abstracts on Spatial Information Science CSIS DAYS. https://doi.org/10.3390/su12093925 Rawat, J. S. and Kumar, M., 2015. Monitoring land use-cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science. 18 (1), 77-84. https://doi.org/10.1016/j.ejrs.2015.02.002 Roosta, Z., Darvish, S.Y. and Falahati, F., 2012. Application of remote sensing and geographic information system in extracting land use map of Shiraz suburbs, Landuse planning. 4(6), 149-163. (In Persian) https://doi.org/ 10.36937/ben.2021.002.002 Sanjari, S. and Boroumand, N., 2013. Monitoring land use and land cover changes over the past three decades using RS (case study: Zarand city in Kerman province). Journal of RS and GIS application in natural resources. 4(1), 56-67. (In Persian). https://doi.org/ 10.22034/jest.2020.22762.3182 Sfougaris, A.L., Sofia G.P. and Loannis, P.I., 2014. Selecting landscape metrics as indicators of spatial heterogeneity- A comparison among Greek landscapes. International Journal of Applied Earth observation and Geoinformation. 26, 26-35. https://doi.org/10.1016/j.jag.2013.05.001 Shirani, N. and Karimi, S., 2011. The use of GIS in the study of patterns of urban landforms, Second Planning and Environment Conference, (On line), Tehran, 16-17 May. University of Tehran. (In Persian) .https://doi.org/10.1109/ICMT.2011.6001730 Shu, B., Zhu, S., Qu, Y., Zhang, H., Li, X. and Carsjens, G. J., 2020. Modelling multi-regional urban growth with multilevel logistic cellular automata, Computers, Environment and Urban Systems. 80, 101457. https://doi.org/10.3390/land11122210 Simova, P. and Gdulova, K., 2012. Landscape indices behavior, A review of scale effects., Journal of Applied Geography. 34, 385-394. https://doi.org/ 10.1016/j.apgeog.2012.01.003 Surabuddin M. M., Sharma, N., Kappas, M. and Garg, P.K., 2013. Modeling of spatiotemporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques. Geocarto International. 28 (7), 632-656. https://doi.org/10.3390/su122410452 Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, S. and Sneeuw, N., 2015. A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment. 156 (2), 349-360. Turner, M. G. and Ruscher, C. L., 1988. Changes in landscape patterns in Georgia, USA. Landscape ecology.1 (4), 241-251. https://doi.org/ 10.1016/j.rse.2014.10.006 Wang, Y., Fan, Z., Wang, X. and Li, J., 2008. GIS-based urban mosaic and its gradient analysis, IEEE the Second International Conference On Bioinformatics and Biomedical Engineering (ICBBE 2008), Shanghai, China. 4310-4313. https://doi.org/ 10.1109/ICBBE.2008.577
| ||
آمار تعداد مشاهده مقاله: 8,396 تعداد دریافت فایل اصل مقاله: 4,566 |