ارزیابی ارتباط الگوی کاربری اراضی و تغییرات فضایی کیفیت آب در مقیاس حوضه آبخیز: مطالعه موردی زیرحوضه آبخیز رودخانه مارون | ||
فصلنامه علوم محیطی | ||
مقاله 9، دوره 22، شماره 2، 1403، صفحه 325-348 اصل مقاله (1.61 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.48308/envs.2024.1362 | ||
نویسندگان | ||
فریبا هدایت زاده1؛ علیرضا ایلدرمی* 2؛ نسرین حسن زاده1؛ نادر بهرامی فر3؛ مهدی بنایی4 | ||
1گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران | ||
2گروه مهندسی طبیعت، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران | ||
3گروه محیط زیست، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، مازندران، ایران | ||
4گروه آبزی پروری، دانشکده منابع طبیعی و محیط زیست، دانشگاه صنعتی خاتم النبیا (ص) بهبهان، بهبهان، ایران | ||
چکیده | ||
سابقه و هدف: کیفیت حوضه رودخانه با سلامت اکوسیستم آن مشخص می شود تا منابع و خدمات قابل توجه و ارزشمندی را برای استفاده انسان و خود حوضه فراهم کند. با این حال، تغییرات الگوی کاربری اراضی که انعکاسی مؤثر از فعالیت های انسانی است، سلامت رودخانه را به شدت مختل کرده و محرک اصلی کاهش کیفیت آب است. بررسی رابطه بین الگوی کاربری اراضی و کیفیت آب رودخانه، مبنای مهمی برای ایمنی کیفیت آب و مدیریت مؤثر کاربری اراضی فراهم میکند. لذا، هدف این مطالعه بررسی تأثیر الگوهای کاربری اراضی بر کیفیت آب های سطحی در محدوده زیرحوضه آبخیز رودخانه مارون است. مواد و روشها: به منظور نمونه برداری از منطقه مطالعاتی ابتدا مرز زیرحوضه آبخیز رودخانه مارون تعیین و سپس زیرحوضه مورد نظر با استفاده از ابزار آنالیز هیدرولوژیکی در نرم افزار ArcGIS به زیرحوضه های مختلف کوچکتر تقسیم و نقشه آبراهه های منطقه تهیه شد. سپس ایستگاه های نمونه برداری از نقطه خروجی هر یک از این زیرحوضه ها در محدوده ی زیرحوضه اصلی انتخاب شدند. سپس به منظور اندازه گیری پارامترهای کیفی آب محدوده مورد مطالعه، نمونه برداری از 38 ایستگاه پایش در سطح زیرحوضه ها با سه تکرار در بهار 1402 انجام شد. نقشه کاربری اراضی نیز جهت ارزیابی تغییرات و تاثیر الگوهای کاربری و پوشش زمین بر وضعیت کیفیت آب زیرحوضه آبخیز رودخانه مارون با استفاده از تصاویر لندست تهیه شد. سپس با استفاده از سیستم اطلاعات جغرافیایی و تکنیکهای آماری چند متغیره، اثرات کاربری اراضی در سطح زیرحوضه مارون بر کیفیت آب رودخانه برآورد گردید. به علاوه جهت ارزیابی درجه کیفیت آب رودخانه در زیرحوضه های مختلف، از شاخص کیفیت آب (WQI) جهت تجزیه و تحلیل داده های کیفیت آب استفاده شد. نتایج و بحث: نتایج بررسی توزیع الگوهای کاربری اراضی نشان داد که کاربری مرتع کاربری غالب در سطح زیرحوضه رودخانه مارون است و پارامترهای کیفیت آب تغییرات قابل توجهی را در ایستگاه های تحت پوشش کاربری کشاورزی و جنگلی نشان دادند. نتایج تجزیه و تحلیل همبستگی و رگرسیون خطی پارامترهای کیفیت آب و الگوهای کاربری اراضی در زیرحوضه رودخانه مارون نشان داد که کاربری کشاورزی با پارامترهای pH و DO ارتباط منفی و با پارامترهای و و Ca2+ ارتباط مثبت، کاربری جنگل همبستگی مثبت با DO و منفی با ، و کاربری شهری نیز همبستگی منفی با DO نشان داد. مقادیر WQI در ایستگاه های مختلف پایش شده بین 80/73 و 73/288 برآورد شد که براساس این شاخص، سطح سلامت رودخانه در بالادست زیرحوضه بهتر از پایین دست بود. بطور کلی براساس طبقه بندی WQI، 5/62 % کیفیت آب زیرحوضه آبخیز رودخانه مارون در طبقه "ضعیف"، 25 % در طبقه "بسیار ضعیف" و 5/12 % در طبقه "خوب" قرار داشت. نتیجه گیری: یافته های حاصل از پژوهش بیانگر این است که کاربری کشاورزی عامل کلیدی تأثیرگذار بر پارامترها و در نتیجه افت کیفیت آب در سطح زیرحوضه رودخانه مارون می باشد و محدود کردن تخلیه رواناب ناشی از فعالیت های کشاورزی برای بهبود کیفیت آب در منطقه مورد مطالعه حیاتی است. این مطالعه اهمیت تغییرات کاربری / پوشش اراضی در کیفیت آب را برای تصمیم گیری آگاهانه در مورد برنامه ریزی و مدیریت صحیح حوضه برجسته می کند. | ||
کلیدواژهها | ||
کاربری اراضی؛ پایش کیفیت آب؛ تکنیکهای آماری چند متغیره؛ توزیع فضایی؛ زیرحوضه رودخانه مارون | ||
عنوان مقاله [English] | ||
Assessment of Relationship between Land Use Pattern and Spatial Distribution of Water Quality at the Watershed Scale: A Case Study of Maroon River Sub-basin | ||
نویسندگان [English] | ||
Fariba Hedayatzadeh1؛ Alireza Ildoromi2؛ Nasrin Hasanzadeh1؛ Nader Bahramifar3؛ Mahdi Banaee4 | ||
1Department of Environmental Science, Faculty of Environment and Natural Resources, Malayer University, Malayer, Iran | ||
2Department of Nature Engineering, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran | ||
3Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Mazandaran, Iran | ||
4Department of Aquaculture, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran | ||
چکیده [English] | ||
Introduction: The health of the river basin is determined by the health of its ecosystem to provide important and valuable resources and services for human use and the basin itself. However, the changes in the land use pattern, which is an effective reflection of anthropic activities, have greatly disturbed the health of the river and are the main driver of water quality reduction. Examining the relationship between land use patterns and river water quality provides an important basis for water quality safety and effective land use management. Therefore, the aim of this study is to investigate the influence of land use patterns on surface water quality based on the water quality monitoring data and land use data from 38 sampling points in the sub-basin of the Maroon River. Material and Methods: In order to sample from the study area, first, the boundary of the sub-basin of the maroon river was determined, and then the sub-basin was divided into different smaller sub-basins using the hydrological analysis tool in ArcGIS software, and the map of waterways in the region was also prepared. Then, sampling stations were selected from the exit point of each of these sub-basins in the main sub-basin area. In order to measure the water quality parameters of the studied area, sampling was done from 38 monitoring stations in the sub-basins in triplicates in the spring of 2023. The land use map was prepared using Landsat satellite images to evaluate the changes and the impact of land use patterns on the water quality status of the Maroon River sub-basin. Then, using geographic information system and multivariate statistical techniques, the effects of land use on river water quality in the Maroon sub-basin were estimated. In addition, in order to evaluate the quality of river water in different sub-basins, water quality data was analyzed using the water quality index (WQI). Results and Discussion: The results of the evaluation of the distribution of land use patterns showed that the use of pasture is the dominant use in the sub-basin of the Maroon River and the water quality parameters exhibited significant changes in the stations covered by agricultural and forest use. The results of correlation analysis and linear regression of water quality parameters and land use patterns in the Maroon River sub-basin showed that agricultural land has a negative relationship with pH and DO parameters and a positive relationship with parameters , and Ca2+, forest land has a positive correlation with DO and a negative correlation with , and urban land also showed a negative correlation with DO. WQI values in different monitoring stations were estimated between 73.80 and 288.73 which showed that the health level of the river upstream of the sub-basin was better than downstream. In general, based on the WQI classification, 62.5% of the water quality of the Maroon River sub-basin was in the "poor" class, 25% in the "very poor" class, and 12.5% in the "good" class. Conclusion: The findings of the research showed that agricultural land was the key factor affecting the water quality parameters and as a result the decrease in water quality in the sub-basin of the Maroon River, so limiting the discharge of runoff from agricultural activities is critical for improving water quality in the study area. This study highlights the importance of LULC changes in water quality for making informed decisions on proper watershed planning and management. | ||
کلیدواژهها [English] | ||
land use, water quality monitoring, multivariate statistical techniques, spatial distribution, Maroon River sub-basin | ||
مراجع | ||
Alias, S.W.A.N., 2020. Ecosystem health assessment of Sungai Pengkalan chepa basin: water quality and heavy metal analysis. Sains Malays. 49, 1787-1798. https://dx.doi.org/10.17576/jsm-2020-4908-03 Boeder, M. and Chang, H., 2008. Multi-scale analysis of oxygen demand trends in an urbanizing oregon watershed, USA. Journal of Environmental Management. 87, 567-581. https://doi.org/10.1016/j.jenvman.2007.12.009 Bora, M. and Goswami, D.C., 2017. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India. Applied Water Science. 7, 3125-3135. https://doi.org/10.1007/s13201-016-0451-y Bu, H., Meng, W., Zhang, Y. and Wan, J., 2014. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators. 41, 187-197. https://doi.org/10.1016/j.ecolind.2014.02.003 Chabuk, A., Al-Madhlom, Q., Al-Maliki, A., Al-Ansari, N., Hussain, H.M. and Laue, J., 2020. Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software. Arabian Journal of Geosciences. 13, 1-23. https://doi.org/10.1007/s12517-020-05575-5 Chen, X., Strokal, M., Van Vliet, M.T., Stuiver, J., Wang, M., Bai, Z., Ma, L. and Kroeze, C., 2019. Multi-scale modeling of nutrient pollution in the rivers of China. Environmental Science and Technology. 53(16), 9614-9625. https://doi.org/10.1021/acs.est.8b07352 Delpla, I. and Rodriguez, M. J., 2014. Effects of future climate and land use scenarios on riverine source water quality. Science of the Total Environment. 493, 1014-1024. https://doi.org/10.1016/j.scitotenv.2014.06.08 Ding, J., Jiang, Y., Fu, L., Liu, Q., Peng, Q. and Kang, M., 2015. Impacts of land use on surface water quality in a subtropical River Basin: a case study of the Dongjiang River Basin, Southeastern China. Water. 7(8), 4427-4445. https://doi.org/10.3390/w7084427 Gani, M. A., Sajib, A.M., Siddik, M.A. and Moniruzzaman, M., 2023. Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques. Environmental Monitoring and Assessment. 195(4), 449. https://doi.org/10.1007/s10661-023-10989-1 Gorgoglione, A., Gregorio, J., Rios, A., Alonso, J., Chreties, C. and Fossati, M., 2020. Influence of land use/land cover on surface-water quality of Santa Lucìa river, Uruguay. Sustainability. 12(11), 4692. https://doi.org/10.3390/su12114692 Haidary, A., Amiri, B.J., Adamowski, J., Fohrer, N. and Nakane, K., 2013. Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resources Management. 27, 2217-2229. https://doi.org/10.1007/s11269-013-0284-5 Hasani Sangani, M., Jabbarian Amiri, B., Alizadeh Shabani, A., Sakieh, Y. and Ashrafi, S., 2015. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea. Environmental Science and Pollution Research. 22, 4985-5002. https://doi.org/10.1007/s11356-014-3727-5 Huang, F., Wang, X., Lou, L., Zhou, Z. and Wu, J., 2010. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research. 44(5), 1562-1572. https://doi.org/10.1016/j.watres.2009.11.003 Hurley, T. and Mazumder, A., 2013. Spatial scale of land‐use impacts on riverine drinking source water quality. Water Resources Research. 49(3), 1591-1601. https://doi.org/10.1002/wrcr.20154 Jiang, Y., Ding, Z., Peng, Q., Liao, J. and Lv, L., 2012. Spatial distribution and corresponding factors of heavy metals concentrations in the Dongjiang River basin, southeast China. Research Journal of Environmental and Earth Sciences. 4(4), 448-459. Jung, K. W., Lee, S. W., Hwang, H. S. and Jang, J.H., 2008. The effects of spatial variability of land use on stream water quality in a costal watershed. Paddy and Water Environment. 6, 275-284. https://doi.org/10.1007/s10333-008-0122-1 Kändler, M., Blechinger, K., Seidler, C., Pavlů, V., Šanda, M., Dostál, T., Krása, J., Vitvar, T. and Štich, M., 2017. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Science of the Total Environment. 586, 1316-1325. https://doi.org/10.1016/j.scitotenv.2016.10.221 Kang, J. H., Lee, S. W., Cho, K. H., Ki, S. J., Cha, S. M. and Kim, J. H., 2010. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan River basin. Water Research. 44(14), 4143-4157. https://doi.org/10.1016/j.watres.2010.05.009 Kawo, N. S. and Karuppannan, S., 2018. Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences. 147, 300-311. https://doi.org/10.1016/j.jafrearsci.2018.06.034 Khan, A., Khan, A., Khan, F. A., Shah, L. A., Rauf, A. U., Badrashi, Y. I., Khan, W. and Khan, J., 2021. Assessment of the impacts of terrestrial determinants on surface water quality at multiple spatial scales. Polish Journal of Environmental Studies. 30(3), 2137-2147. https://doi.org/10.15244/pjoes/122503 Liang, H., Gao, M., Liu, J., Wei, Y. and Guo, X., 2010. A novel integrated step-feed biofilm process for the treatment of decentralized domestic wastewater in rural areas of China. Journal of Environmental Sciences. 22(3), 321-327. https://doi.org/10.1016/S1001-0742(09)60111-X Liang, X., Pan, Y., Li, C., Wu, W. and Huang, X., 2023. Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin. Sustainability. 15(20), 15146. https://doi.org/10.3390/su152015146 Liu, J., Zhang, X., Wu, B., Pan, G., Xu, J. and Wu, S., 2017. Spatial scale and seasonal dependence of land use impacts on riverine water quality in the Huai River basin, China. Environmental Science and Pollution Research. 24, 20995-21010. https://doi.org/10.1007/s11356-017-9733-7 Maurya, P. K., Ali, S. A., Alharbi, R. S., Yadav, K. K., Alfaisal, F. M., Ahmad, A., ... and Jeon, B. H., 2021. Impacts of land use change on water quality index in the Upper Ganges River near Haridwar, Uttarakhand: a GIS-based analysis. Water. 13(24), 3572. https://doi.org/10.3390/w13243572 Maurya, P. K., Ali, S. A., Alharbi, R. S., Yadav, K. K., Alfaisal, F. M., Ahmad, A., Ditthakit, P., Prasad, S., Jung, Y-K. and Jeon, B. H., 2021. Impacts of land use change on water quality index in the Upper Ganges River near Haridwar, Uttarakhand: a GIS-based analysis. Water. 13(24), 3572. https://doi.org/10.3390/w13243572 Mo, W., Yang, N., Zhao, Y. and Xu, Z., 2023. Impacts of land use patterns on river water quality: the case of Dongjiang Lake Basin, China. Ecological Informatics. 75, 102083. https://doi.org/10.1016/j.ecoinf.2023.102083 Mu, M., Gao, L., Zhang, H., Ge, J., Zhang, Z., Qiu, Y. and Zhao, X., 2023. Effects of land use on water quality at different spatial scales in the middle reaches of Huaihe River. Journal of Freshwater Ecology. 38(1), 2176373. https://doi.org/10.1080/02705060.2023.2176373 Namugize, J. N., Jewitt, G. and Graham, M., 2018. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Physics and Chemistry of the Earth, Parts A/B/C. 105, 247-264. https://doi.org/10.1016/j.pce.2018.03.013 Ngoye, E. and Machiwa, J. F., 2004. The influence of land-use patterns in the Ruvu river watershed on water quality in the river system. Physics and Chemistry of the Earth, Parts A/B/C. 29(15-18), 1161-1166. https://doi.org/10.1016/j.pce.2004.09.002 Pei, L., Wang, C., Zuo, Y., Liu, X. and Chi, Y., 2022. Impacts of Land Use on Surface Water Quality Using Self-Organizing Map in Middle Region of the Yellow River Basin, China. International Journal of Environmental Research and Public Health. 19(17), 10946. https://doi.org/10.3390/ijerph191710946 Permatasari, P. A., Setiawan, Y., Khairiah, R. N. and Effendi, H., 2017. The effect of land use change on water quality: A case study in Ciliwung Watershed. In IOP Conference Series: Earth and Environmental Science. 54 (1), p. 012026). IOP Publishing. Piatek, K. B., Christopher, S. F. and Mitchell, M. J., 2009. Spatial and temporal dynamics of stream chemistry in a forested watershed. Hydrology and Earth System Sciences. 13(3), 423-439. https://doi.org/10.5194/hess-13-423-2009 Quintas-Soriano, C., Castro, A. J., Castro, H. and García-Llorente, M., 2016. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy. 54, 534-548. https://doi.org/10.1016/j.landusepol.2016.03.011 Raeisi, N., Moradi, S. and Scholz, M., 2022. Surface water resources assessment and planning with the QUAL2Kw model: a case study of the Maroon and Jarahi Basin (Iran). Water. 14(5), 705. https://doi.org/10.3390/w14050705 Ramakrishnaiah, C. R., Sadashivaiah, C. and Ranganna, G., 2009. Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of Chemistry. 6(2), 523-530. https://doi.org/10.1155/2009/757424 Rixen, T., Baum, A., Sepryani, H., Pohlmann, T., Jose, C. and Samiaji, J., 2010. Dissolved oxygen and its response to eutrophication in a tropical black water river. Journal of Environmental Management. 91(8), 1730-1737. https://doi.org/10.1016/j.jenvman.2010.03.009 Sahu, P. and Sikdar, P. K., 2008. Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environmental Geology. 55, 823-835. https://doi.org/10.1007/s00254-007-1034-x Sakke, N., Jafar, A., Dollah, R., Asis, A. H. B., Mapa, M. T. and Abas, A., 2023. Water Quality Index (WQI) Analysis as an Indicator of Ecosystem Health in an Urban River Basin on Borneo Island. Water. 15(15), 2717. https://doi.org/10.3390/w15152717 Scanlon, B. R., Fakhreddine, S., Reedy, R. C., Yang, Q. and Malito, J.G., 2022. Drivers of spatiotemporal variability in drinking water quality in the United States. Environmental Science & Technology. 56(18), 12965-12974. https://doi.org/10.1021/acs.est.1c08697 Sharifi Paichoon, M., Omidvar, K. and Motazaker, K., 2019. Assessment of flooding using cluster analysis and multivariable regression methods with emphasis on hydro geomorphological parameters (Case study: Maroon catchment). Journal of Natural Environmental Hazards. 8(21), 75-92. 10.22111/JNEH.2018.22519.1336 SMEWW, 1999. Standard Methods for the Examination of Water and Wastewater 4500-P, APHA, AWWA and WEF. American Public health, Washington DC. Strickland, J. D. H. and Parsons, T. R., 1972. A practical handbook of seawater analysis. 11-1, (1) 18. http://dx.doi.org/10.25607/OBP-1791 Taranu, Z.E. and Gregory-Eaves, I., 2008. Quantifying relationships among phosphorus, agriculture, and lake depth at an inter-regional scale. Ecosystems. 11, 715-725. https://doi.org/10.1007/s10021-008-9153-0 Teixeira, Z. and Marques, J.C., 2016. Relating landscape to stream nitrate-N levels in a coastal eastern-Atlantic watershed (Portugal). Ecological Indicators. 61, 693-706. https://doi.org/10.1016/j.ecolind.2015.10.021 Tian, Y., Jiang, Y., Liu, Q., Dong, M., Xu, D., Liu, Y. and Xu, X., 2019. Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Science of the Total Environment. 667, 142-151. https://doi.org/10.1016/j.scitotenv.2019.02.356 Tran, C. P., Bode, R. W., Smith, A. J. and Kleppel, G. S., 2010. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators. 10(3), 727-733. https://doi.org/10.1016/j.ecolind.2009.12.002 Uddin, M.G., Nash, S. and Olbert, A.I., 2021. A review of water quality index models and their use for assessing surface water quality. Ecological Indicators. 122, 107218. https://doi.org/10.1016/j.ecolind.2020.107218 Varol, S. and Davraz, A., 2015. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences. 73, 1725-1744. https://doi.org/10.1007/s12665-014-3531-z Wang, G., Xu, Z. and Zhang, S., 2014. The influence of land use patterns on water quality at multiple spatial scales in a river system. Hydrological Processes. 28(20), 5259-5272. https://doi.org/10.1002/hyp.10017 Wang, L., Han, X., Zhang, Y., Zhang, Q., Wan, X., Liang, T., Song, H., Bolan, N., Shaheen, M. S., White, J.R. and Rinklebe, J., 2023. Impacts of land uses on spatio-temporal variations of seasonal water quality in a regulated river basin, Huai River, China. Science of The Total Environment. 857, 159584. https://doi.org/10.1016/j.scitotenv.2022.159584 WHO, 2008. Guidelines for Drinking-Water Quality. World Health Organization, Geneva, Switzerland. Yang, H., Wang, G., Wang, L. and Zheng, B., 2016. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environmental Science and Pollution Research. 23, 11448-11460. https://doi.org/10.1007/s11356-015-5922-4 Yang, Y., Zhang, X., Jiang, J., Han, J., Li, W., Li, X., Mei Yee Leung, K., Snyder, S.A. and Alvarez, P.J., 2021. Which micropollutants in water environments deserve more attention globally? Environmental Science & Technology. 56(1), 13-29. https://doi.org/10.1021/acs.est.1c04250 Yidana, S.M. and Yidana, A., 2010. Assessing water quality using water quality index and multivariate analysis. Environmental Earth Sciences. 59, 1461-1473. https://doi.org/10.1007/s12665-009-0132-3 Yuan, D., Wang, J. and Wang, H., 2019. Study of characteristics of DOM in urban runoff in Beijing and the mechanism with typical heavy metal. Acta Ecologica Sinica. 39(22), 8404-8415. Zalaki Badili, N., Sayyad, G., Hemadi, K., Akhavan, S. and Abdi, A., 2013. Simulation of Runoff on Murun Dam Watershed (Idanak) using by. Journal of Agricultural Engineering Soil Science and Agricultural Mechanization, (Scientific Journal of Agriculture). 35(2), 25-36. Zhang, Z., Chen, Y., Wang, P., Shuai, J., Tao, F. and Shi, P., 2014. River discharge, land use change, and surface water quality in the Xiangjiang River, China. Hydrological Processes. 28(13), 4130-4140. https://doi.org/10.1002/hyp.9938 | ||
آمار تعداد مشاهده مقاله: 8,036 تعداد دریافت فایل اصل مقاله: 4,256 |