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Model predictive control is a widely utilized advanced control technique in 

industrial settings, valued for its capacity to effectively manage complex multi-

input multi-output processes while optimizing process performance. Lyapunov-

based model predictive control of Nonlinear Systems is a method that incorporates 

the objective function as a suitable Lyapunov function, thereby ensuring stability 

of the nonlinear system. This study involves the modeling of a nonlinear system 

to the Lyapunov function and the analysis of a quadruple tank using nonlinear 

model predictive control and barrier function-based model predictive control 

algorithms. Additionally, a comparison is made between a PID controller and a 

well-established industrial controller to evaluate the performance of the nonlinear 

quadruple tank, with the findings indicating satisfactory results. 
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1. Introduction 

The concept of Model Predictive Control (MPC) was 

first introduced in the late 1970s and has since undergone 

significant development. MPC is a control strategy that 

leverages a dynamic model of the system to forecast its 

future behavior and optimize control actions within a 

finite time frame. Nonlinear MPC is an advanced control 

methodology employed in diverse engineering contexts 

characterized by nonlinear system dynamics. Nonlinear 

MPC builds upon the MPC framework to accommodate 

systems with nonlinear dynamics, thereby expanding its 

applicability to a wider spectrum of engineering 
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applications. Barrier function-based MPC is a specialized 

form of MPC that integrates barrier functions to address 

constraints within the optimization problem. Barrier 

functions are mathematical functions created to penalize 

breaches of constraints, enabling the optimization 

algorithm to maneuver around constraint boundaries. This 

approach is especially beneficial for managing systems 

that are subject to both equality and inequality constraints. 

The stability of the problem is considered an essential 

aspect of MPC. For instance, if the feasibility condition is 

not included in the MPC theorem, it may yield incorrect 

results and lead to issues such as model faults, 
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disturbances, and incorrect initial conditions. Furthermore, 

if the associated system is not stable, the controller's 

actions will not converge to the desired outcome. 

Therefore, addressing stability and feasibility is crucial in 

resolving MPC problems. One proposed solution to 

achieve stability and feasibility is to incorporate a cost 

function, such as a Lyapunov function, which ensures the 

fulfillment of the two aforementioned criteria for a closed-

loop system. 

In a previous studies, [1] suggested the combination of 

Koopman operator methodology with Lyapunov-based 

MPC to stabilize nonlinear systems. The Koopman 

operator allows for linear representations of nonlinear 

dynamic systems by transforming their dynamics into a 

higher-dimensional space using observable functions. 

These functions are then controlled by the linear 

Koopman operator in an infinite-dimensional space. 

Ghasemi et al in [2] introduced a model predictive 

controller for a multilevel asymmetric cascade grid-

connected inverter, aiming to predict and control system 

behavior several steps ahead. The controller was 

developed using the Lyapunov theory as a basis for the 

design of a predictive function controller. A barrier 

function-based MPC approach that balances safety and 

performance is discussed in [3]. This method combines 

the control barrier function and the control Lyapunov 

function in a time-invariant MPC framework without 

constraints, guaranteeing both safety and optimal 

decision-making. In [4], a MPC utilizing an ensemble of 

recurrent neural network models is presented, 

incorporating control Lyapunov-Barrier functions to 

ensure closed-loop stability and operational safety for 

nonlinear processes in the presence of two categories of 

unsafe regions: bounded and unbounded sets. Bui et al. in 

[5] introduce a novel Lyapunov-based nonlinear MPC 

approach for addressing the attitude control challenge in 

unmanned aerial vehicles, a critical aspect of their 

operational functionality. The proposed controller is 

formulated using a quadratic cost function that 

incorporates the dynamics of the unmanned aerial 

vehicles, and system constraints. Furthermore, an 

additional contraction constraint is incorporated to 

guarantee the stability of the closed-loop system. The 

author in  [6] presents three detection strategies derived 

from a Lyapunov-based economic MPC for nonlinear 

systems. The initial approach involves introducing 

randomized adjustments to an  Lyapunov-based economic 

MPC formulation in real-time to potentially identify 

cyberattacks. The second approach includes identifying 

attacks by comparing the variance between state 

measurements and state forecasts with a set threshold. 

Finally, the third tactic uses duplicate state estimators to 

recognize deviations from the anticipated standard 

process behavior as potential cyber threats. A study 

conducted by Aminsafaee and colleagues in [7] addresses 

the issue of robust stabilization in a specific category of 

nonlinear discrete-time switched systems characterized 

by polytopic uncertainties and unknown state delay. 

Additionally, the study considers the presence of 

constraints on the control signal. The main goal of the 

suggested controller is to stabilize the switched system 

when faced with any type of switching signals, by 

employing the approach of switched Lyapunov function. 

In [8], a method of predictive direct power control is 

formulated using the Lyapunov function approach for 

regulating the grid-connected photovoltaic converter. The 

predictive control methodology employs a discretized 

representation of the photovoltaic converter to anticipate 

forthcoming active and reactive power levels within the 

system. This process involves evaluating a cost function 

across various voltage vectors, with the algorithm 

subsequently identifying the most advantageous voltage 

vector that minimizes the cost function. This selection 

enables the calculation of model variables for the 

subsequent sampling period. In [9], a continuous-time 

Barrier Function-based MPC approach is introduced for 

linear systems subject to Signal Temporal Logic 

specifications and input constraints. The fulfillment of the 

Signal Temporal Logic specifications is represented using 

time-varying barrier functions, and a control law is 

formulated to minimize violations in cases where the 

specified task with a given robustness level cannot be 

achieved, such as due to limitations in actuation. The 

proposed scheme ensures recursive feasibility by 

incorporating a time-varying terminal constraint, which 

enforces a desired system behavior to ensure the 

fulfillment of the task with predetermined robustness. A 

Lyapunov-based MPC approach was suggested in [10] to 

enhance shipboard boom cranes by incorporating ship 

rolling, optimizing, and addressing input saturation. This 

includes incorporating ship rolling into the shipboard 

boom crane model's initial state variables to aid in the 

development of subsequent controllers. The author of  [11] 

concentrates on the task of guiding autonomous 

underwater vehicles through challenging ocean 

environments. They have developed a new MPC 

framework based on Lyapunov principles, which 

enhances the vehicles' ability to track trajectories by 

continuously optimizing their performance in real time. In 

[12], the effectiveness of MPC and PID methods was 

compared. This article also examines the comparison 

between the two methods to assess the effectiveness of 

MPC. Our study is based on a similar model and evaluates 

the effectiveness of MPC by comparing it with PID after 

implementing the desired MPC methods. The authors in 

[13] delve deeper into the potential of Lyapunov-based 

Economic MPC to achieve various goals during process 

operation. This includes assisting in distinguishing 

between mechanistic models in real time. Specifically, 

when multiple competing mechanistic models can explain 

the available data, a new series of "online experiments" 

can be carried out to gather additional information and 

eliminate models that do not accurately represent the 

actual process. In reference [14], for arbitrarily constant 

or piecewise-constant set-points and disturbances, it has 

been proposed to use a nonlinear model predictive 

controller to accomplish offset-free tracking and 

disturbance rejection. The controller deals with the 

control issue by managing the non-linear behavior of the 

plant and integrating the tracking error of the controlled 

variables. This approach offers a simple way to track and 

counteract disturbances resulting from unknown set-

points or disturbances. The study in [15] examines the 

control of a system with Slow-Rate Instantaneous 

Measurement for the first time. It introduces a pole 

placement state feedback with feedforward controller to 
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enable both Slow-Rate Instantaneous Measurement and 

traditional fast-rate output to follow their step reference 

input. This controller includes a periodically changing 

gain and an observer to estimate the slow-rate 

instantaneous state variable at sampling points. In [16], a 

simulation of a quadruple tank system is used to illustrate 

common outcomes. The suggested controller design 

features a simplified ordering structure that employs a set 

of designated linear transfer functions and gains to 

minimize a Generalized Predictive Control cost index. 

This methodology allows for the integration of various 

traditional controller setups within the feedback loop, 

including extended PI, PID, Lead-lag, or a more 

comprehensive transfer function framework. Pazoki et al 

[17] present a comparative analysis of the performance of 

various algorithms based on their performance 

characteristics and indices. The evaluation of these 

algorithms is conducted through multiple simulation 

series, demonstrating that State Space MPC exhibits 

superior performance, as well as robustness against 

disturbances and noise. Therefore, State Space MPC is 

deemed the most suitable choice for implementation in the 

context of a Continuous Stirred Tank Reactor. The 

scholars in reference [18] aim to create and assess an 

Adaptive Pole Placement Controller and a resilient 

Adaptive Sliding Mode Controller to efficiently regulate 

a minimum phase Quadruple Tank Process. The 

controllers are evaluated using simulations, and their 

effectiveness is measured against a PID controller in 

terms of how well they handle changes in set points, reject 

disturbances, and cope with uncertainties in parameters. 

In [19], two novel adaptations of modified active 

disturbance rejection control are introduced to stabilize a 

nonlinear quadruple tank system and regulate the water 

levels of the lower two tanks in the face of external 

disturbances, uncertain parameters, and varying input set-

points. A study in [20] presents various alternatives for 

MPC by comparing different implementations of MPC. 

This comparative analysis will be conducted internally 

and demonstrated using the four-tank benchmark, a well-

researched system often examined by scholars focusing 

on industrial applications. Sorcia-Vázquez and colleagues 

[21] introduce a decentralized MPC design for nonlinear 

systems, taking into account the interaction between 

control inputs. This controller utilizes a centralized robust 

tube-based nonlinear MPC system. A significant 

development lies in the formulation of a method to 

partition the process model into s subsystems, enabling 

the design of robust tube-based controllers that guarantee 

a constrained linearization error. In [22], a study presented 

the development and implementation of an advanced 

MPC controller and a PID controller within a 

programmable logic controller for a quadruple tank 

process. The study involved a comparative analysis of two 

controllers that were designed according to the specified 

initial process conditions, which mandated valve opening 

values to fall between 60% and 80% to enable effective 

communication between interconnected tanks. The PID 

controllers were programmed in Ladder language with 

PID blocks within Tia Portal V16 for process regulation, 

whereas the MPC controller was formulated using 

structured language SCL exported from Matlab-Simulink 

to Tia Portal V16. In [23], the authors tackled the 

previously mentioned difficulties by developing control 

strategies to manage the water flow in the lower two tanks 

of the quadruple tank system. To compare and assess 

performance, three distinct controller algorithms - a 

nonlinear Model Predictive Control (MPC), a nonlinear 

MPC with an extended Kalman filter, and a linear MPC - 

were investigated in the study and development of the 

control system for a quadruple water level system under 

non-minimum phase conditions using the MATLAB 

simulation platform. Within model predictive control, the 

paper [24] an engineering perspective' offers a meticulous 

examination encompassing theoretical underpinnings, 

historical trajectories, and pragmatic insights. Notably, 

the discourse delves into one of the pivotal challenges 

confronting MPC implementation: the computational 

burden. Through a judicious analysis, the paper elucidates 

how managing computational complexity stands as a 

cornerstone in the design and deployment of MPC 

systems, thereby providing valuable guidance for 

engineers and researchers navigating this intricate terrain. 

The book [25] explores new developments in MPC, 

especially in economic and distributed MPC. It not only 

discusses the latest advancements but also raises 

important questions for further research and practical use. 

By addressing both theoretical and practical challenges, 

this book guides researchers and practitioners towards 

better understanding and application of MPC techniques, 

fueling innovation in the field. 

Consequently, we constructed a Lyapunov function 

using nonlinear MPC and barrier function MPC 

algorithms in a quadruple tank system, and conducted an 

analysis. The aim of this study is to compare the 

effectiveness of constrained and unconstrained MPC  

methods in nonlinear systems. Furthermore, we verified 

the simulation by incorporating a PID controller to 

demonstrate the efficacy of our proposed approach in 

nonlinear systems. We have rephrased the section 

detailing our contributions to explicitly emphasize the 

novelty and significance of our work. Specifically, we 

have: 

 Develop a Lyapunov function using nonlinear 

MPC algorithm for quadruple-tank 

 Applied a Lyapunov function using barrier 

function MPC algorithm for quadruple-tank 

 Comparison the suggested approaches with a PID 

controller and analyzing them 

The remainder of this paper is organized as follows: 

section 2 is described the problem definition. It uses 

nonlinear MPC and barrier function-based MPC. Section 

3 introduces quadruple tanks and related parameters as a 

case study. Section 4 shows the simulation results and 

analyzes them. Finally, Section 5 concludes the paper. 

 

2. Problem Definition  

Nonlinear systems face significant challenges due to 

uncertainty and disturbances, making traditional linear 

control methods ineffective. Ensuring stability and 

feasibility in these systems is crucial for control problems, 

as instability can lead to undesirable controller responses 

and model errors. To address this, incorporating 

Lyapunov functions into the objective function problems 

has been proposed as a solution to guarantee stability and 

feasibility, leading to the development of a branch of 
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model predictive control known as Lyapunov function-

based MPC. This approach has spawned various 

algorithms tailored to specific problem features. In 

practical applications, the importance of nonlinear control 

and MPC is clear. Designing an MPC controller for 

nonlinear systems is a highly intricate task, especially if 

the system is unstable. The suggested controllers should 

be able to characterize the system's stability and 

demonstrate the specific scenario within an unchanging 

set. Therefore, the MPC, based on the Lyapunov problem, 

becomes an optimization challenge. The subsequent 

section outlines the formulation of the MPC based on the 

Lyapunov approach. A discrete nonlinear system is 

regarded as follows: 

𝑥𝑘+1 = 𝐹(𝑥𝑘 , 𝑢𝑘) 
(1) 

where 𝑢 is the vector of control inputs, 𝑘 is sampling 

time, 𝐹  is the evolution operator representing the 

dynamics that transfer the system states forward in time, 

and 𝑥 is the vector of state variables sampled discretely in 

time. The Lyapunov theorem defines MPC-based 

Lyapunov as follows: 

𝑚𝑖𝑛
𝑢𝑘,…,𝑢𝑘+𝑁𝑢+1

 ∑  

𝑁𝑝

𝑗=1

  ∥∥𝑥𝑘+𝑗∥∥𝑊

2
+ ∑  

𝑁𝑢

𝑗=1

 ∥∥𝑥𝑘+𝑗−1∥∥𝑅

2
 

 

(2) 

 
 

𝑆. 𝑡.   𝑥̂𝑘+𝑗 = 𝐹(𝑥𝑘+𝑗−1, 𝑢𝑘+𝑗−1),

𝑗 = 1,… , 𝑁𝑝 
(3) 

 

𝑥̂𝑘 = 𝑥𝑘  
(4) 

 

𝑉(𝑥̂𝑘+𝑗) ⪯ 𝑟,      𝑗 = 1, … , 𝑁𝑝   (5) 
 

𝑉(𝑥̂𝑘+1) − 𝑉(𝑥̂𝑘) ⪯ 𝑉 (𝐹(𝑥𝑘 , ℎ(𝑥𝑘))) − 𝑉(𝑥𝑘)  (6) 

Where 𝑥̂𝑘+𝑗  is the predicted state trajectory with 

initial (measured) state 𝑥𝑘 , 𝑢𝑘+𝑗  denote the calculated 

manipulated input variables j time steps ahead and 𝑁𝑝, 𝑁𝑢 

denotes the prediction and control horizons, respectively. 

The operator ∥. ∥𝑄
2  denotes the weighted Eucledian norm 

defined for an arbitrary vector x and weighting matrix Q 

as ∥ 𝑥 ∥𝑄
2= 𝑥𝑇𝑄𝑥  and 𝑊 ∈ ℜ𝑛×𝑛 , 𝑅 ∈ ℜ𝑚×𝑚  denote the 

positive definite weighting matrices for the state and input 

vectors respectively. Furthermore, V(x) is the Lyapunov 

function associated with the explicit control law h(x). In 

the following, we will define nonlinear MPC and barrier 

function-based MPC algorithms to apply them in our 

problem. 

 

2.1. Nonlinear MPC 

Suppose in a control process, 𝑥(𝑛) variable which 

𝑛 = 1,2,3, … has been measured during the discrete time 

interval. Control process means that the way in which 

𝑢(𝑛)  is determined as a controllable signal could 

influence the procedure of the system. In tracing problems, 

the main goal is determining the 𝑢(𝑛)  which triggers 

𝑥(𝑛)  follows the reference proportion of the input as 

much as possible. The vectors related to 𝑥(𝑛) and 𝑢(𝑛) 

are described as: 

𝑥(𝑛) ∈ 𝑅𝑑 , 𝑢(𝑛) ∈ 𝑅𝑚  
(7) 

Here u(n)  is considered in the form of u(n) =
𝜇(x(n)) which could resist changing the x(n) from the 

reference proportion x∗ = 0. The whole equation of the 

systems are regarded as: 

𝑥+ = 𝑓(𝑥, 𝑢) 
(8) 

In this equation, f: X × U → X is a non-linear function 

that transmits state variable x(n) and control signal u(n) 

to x +  (subsequent state of the system). With starting 

from the current state of 𝑥(𝑛) for any 𝑢(0)… , 𝑢(𝑁 − 1) 

and through (1) the prediction of Xu is considered as: 

𝑥𝑢(0) = 𝑥(𝑛) 
(9) 

 

𝑥𝑢(𝑘 + 1) = 𝑓(𝑥𝑢(𝑘), 𝑢(𝑘)), 𝑘 = 0, … , 𝑁 − 1 
(10) 

Now 𝑢(0), … , 𝑢(𝑁 − 1)  is determined by means of 

optimal control theory which Xu would be nearby X∗ as 

much as possible. For this purpose, distance between 

reference input and xu(k)  which k = 0,… , N − 1  is 

measured with the cost function which is 𝐿(𝑥𝑢(𝑘)), 𝑢(𝑘)). 

The amount of difference between control signal u(k) 

and reference control signal also is considered in cost 

function which here 𝑈∗ = 0 . A kind of common Cost 

Function for mentioned purpose is square Cost Function 

that can be expressed as: 

𝐿(𝑥𝑢(𝑘), 𝑢(𝑘)) = ∥∥𝑥𝑢(𝑘)∥∥
2 + 𝜆 ∥ 𝑢(𝑘) ∥2 (11) 

In (11), 𝜆 ⪰ 0 is a coefficient that if there are not any 

limitations on control signal, it is considered zero. 

Optimal control problem is regarded as: 

𝑚𝑖𝑛 𝐽(𝑥(𝑛), 𝑢(0)) = ∑  𝑁−1
0 𝐿(𝑥𝑢(𝑘), 𝑢(𝑘))      

(12) 

Suppose that this optimal control problem has a result 

that is obtained with minimizing of 𝑢∗(0), … , 𝑢∗( N − 1). 

In order to achieve the optimum feedback the following 

expression is considered. 

𝜇(𝑥(𝑛)) = 𝑢∗(0)         
(13) 

This equation (13) expresses that in any step, the first 

coefficient of optimal control signal sequence is exerted 

on the system which is the same receding horizon 

strategy. In fact, the rule of feedback 𝜇  is obtained by 

means of online optimal repeated algorithm and created 

predictions. In this way, constrained optimization method 

is used in order to exert limitations which some of its 

drawbacks are being more complex, increasing the 

probability of losing feasibility and overloading the 

amount of calculation. As per the provided elucidation, 

the cost function is delineated subsequently: 

𝐽0
∗(𝑥0) = 𝑚𝑖𝑛𝑈0

𝑝(𝑥𝑁) + ∑ 𝑞(𝑥𝑖 , 𝑢𝑖)

𝑁−1

𝑖=0

 

 

(14) 

Where 𝑝(𝑥𝑁)is terminal cost and 𝑞(𝑥𝑖 , 𝑢𝑖)is stage cost as: 

𝑝(𝑥𝑁) = 𝑥𝑁
𝑇𝑃𝑥𝑁 

 
(15) 

 

𝑞(𝑥𝑖 , 𝑢𝑖) = 𝑥𝑖
𝑇𝑄𝑥𝑖 + 𝑢𝑖

𝑇𝑅𝑢𝑖 

 
(16) 
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where 𝑃, 𝑄 and 𝑅 are positive definite matrices. 

2.2. Barrier function-based MPC 

In the MPC approach utilizing barrier function, the 

constrained optimization problem is transformed into an 

unconstrained problem by incorporating additional 

coefficients into the cost function. This adaptation 

facilitates the application of unconstrained optimization 

techniques. Furthermore, this modification ensures 

compliance with all relevant conditions and addresses any 

associated limitations of this optimization method. In 

equation (1), with considering N  as a result of the 

prediction and control, if 𝑢 is considered an index for the 

control sequence in the form of 𝑢 =
𝑢(0), 𝑢(1), … , 𝑢(𝑁 − 1) , in this case 𝑥𝑢(0; 𝑥)  shows 

state variables sequence (with range of N ) which start of 

it is x state furthermore would be affected by 𝑢. So the 

equation for 𝑥𝑢(. ; 𝑥) is considered as: 

𝑥𝑢(0; 𝑥) = (𝑥, 𝑓(𝑥, 𝑢(0)), … , 𝑓(𝑥𝑢(𝑁

− 1; 𝑥), 𝑢(−1))) 
(17) 

Therefore 𝑥𝑢(0; 𝑥) = 𝑥  and also N term of 𝑥𝑢(0; 𝑥) 

is regarded as 𝑥𝑢(𝑖; 𝑥). State variables are in the convex 

and close set of X and inputs are in compact and convex 

set of U. In addition, ultimate state of the system 𝑥𝑢(𝑁; 𝑥) 

should be part of the 𝑋𝑓 set. Also, every set which was 

mentioned has a nonempty subset that are showed as 𝑋0, 

𝑋𝑓(0) and 𝑈0. Finally, the feasible set 𝑢𝑛(𝑥) is described 

as: 
 

𝑢𝑛(𝑥) = 𝑢 
(18) 

Where 𝑢(𝑖) ∈ 𝑈 , 𝑥𝑢(𝑖, 𝑥) ∈ 𝑋 , 𝑥𝑢(𝑁; 𝑥) ∈ 𝑋𝑓 ,  𝑖 =

0,…,N. Barrier functions are used to ensure the forward 

invariance of a set and are similar to Lyapunov functions 

in terms of theoretical construction. A kind of function 

that approaches infinity and is bounded within a positive 

set is called a barrier function. The function guarantees 

forward invariance by never reaching infinity within a 

safe set by applying appropriate criteria to its derivative. 

However, a significant drawback of this approach is the 

complexity of calculating constrained optimization and 

the reduction of feasible circumstances. By modifying the 

Cost Function, the constrained optimization problem in 

the MPC approach based on the Barrier Function is 

changed into an unconstrained problem. This not only 

simplifies calculations but also addresses all design-

related constraints. Cost Function for the standard MPC 

problem is described as: 

𝑚𝑖𝑛 ∶ 𝑓(𝑥(𝑁)) + ∑  𝑁−1
0  𝑖(𝑥(𝑘, 𝑢(𝑘))            

(19) 
 

𝑢(𝑘) ∈ 𝑈, 𝑥(𝑘) ∈ 𝑋, 𝑥(𝑁) ∈ 𝑋𝑓 ⊂ 𝑋            
(20) 

 

 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)), 𝑘 = 0, … , 𝑁 − 1            (21) 

Where i(x, u) is the stage cost which is defined as the 

set of square functions from input and state variables in 

the form of ∥ 𝑥 ∥𝑄
2 +∥ 𝑥 ∥𝑅

2  and also f(x) is the terminal 

cost of which a reasonable choice would be ∥ 𝑥 ∥𝑃
2 . One 

method of incorporating constraints into MPC design is 

through the use of a cost function and solving the 

optimization problem using a constrained optimization 

algorithm. However, this approach presents challenges, 

including the complexity of calculating constrained 

optimization and ensuring the feasibility of the system. 

Therefore, in MPC techniques that rely on barrier function 

principles, the constrained optimization problem is 

converted into an unconstrained optimization problem 

through adjustments made to the cost function. Barrier 

functions are conceptually similar to Lyapunov functions 

and are utilized to ensure the residual property of a 

specified set. A suitable barrier function is characterized 

by its ability to maintain positive values within the set and 

to increase towards infinity as it approaches the 

boundaries of the set. Thus, by commencing with an 

appropriate initial condition and enforcing specific 

constraints on its derivative to ensure that the function 

within a secure set does not approach infinity, the integrity 

of the set is consistently maintained. The cost function of 

the barrier function is as follows: 

𝑢∗(𝑥(𝑘)) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈0
𝐹(𝑥𝑢(𝑁; 𝑥)) 

+𝑙0(𝑥, 𝑢(0)) + ∑ 𝑙(𝑥𝑢(𝑖; 𝑥), 𝑢(𝑖))

𝑁−1

𝑖=0

 

              𝑠. 𝑡.  
 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

            

(22) 

Where: 

F(x)  = ‖x‖P
2 + μBf(x) 

 
(23) 

 

𝑙0(x, u) = ‖x‖Q
2 + ‖u‖R

2 + μBu(u) 

            
(24) 

 

l(x, u) = ‖x‖Q
2 + ‖u‖R

2 + μB𝑥(x) + μBu(u) 

 
(25) 

Bf , B𝑥 and Bu are barrier functions for 𝑋𝑓, 𝕏 and 𝕌. 

The matrices 𝑃, 𝑄, and 𝑅 are assumed to be symmetric 

and positive definite, and the scalar parameter 𝜇, which is 

the weight of the barrier terms, is assumed to be positive. 

Assumption of stability: The nonlinear systems 

under consideration are limited to a group of stable 

systems represented by 𝑥(𝑡) that adhere to the input 

constraints for all u(t) = h(x), ensuring the presence of a 

Table I. Values of quadruple tank system parameters 

Amount Dimentions Parameters 

28  cm2 𝐴1, 𝐴3 

32  cm2 𝐴2, 𝐴4 

0.071  cm2 𝑎1, 𝑎3 

0.057  cm2 𝑎2, 𝑎4 

0.5 𝑉/cm2 𝑘𝑐 

981  cm/s2  g 

 

 
Fig. 1.  A schematic of quadruple tank 

located in Faculty of Electrical Engineering at 

K.N.Toosi University  
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feedback control law within a consistent region and 

stabilizes the closed loop system asymptotically. This 

action is tantamount to postulating the presence of a 

Lyapunov function for the nominal system, as per 

Lyapunov's theorem [26-27]. 

 

3. Case study: Quadruple Tank 

This study focuses on the quadruple tank system as a 

case study for experimental testing of control techniques 

on real systems. The system has been designed to allow 

for the creation of a controller at various operational 

points, but its nonlinear nature may hinder its 

performance across the entire operational range. The 

system's flexibility enables the implementation of 

different experiments, and manual valve adjustments 

provide access to distinct dynamics. Fig. 1 depicts a 

quadruple tank specimen situated within the process 

control laboratory of the Faculty of Electrical Engineering 

at K.N.Toosi University. This equipment is utilized for 

both educational and research endeavors. 

Initially, the experimental procedure involving the 

quadruple tank, as employed in the present study, was 

outlined by Henry and Johnson. This process entails the 

utilization of four water tanks, with two positioned above 

and two below, in conjunction with two valves and two 

pumps. The primary objective of this setup is to regulate 

the water level using the pumps. The inputs for this system 

consist of the pump voltages, while the outputs are 

represented by the water levels in the two lower tanks. 

Building upon the work of Johnson and Henry, the 

nonlinear model of the system, based on Bernoulli's 

principle, has been expounded in previous studies [15], 

[16]. This principle is described as: 

 
 

𝑑ℎ1

𝑑𝑡
= −

𝑎1

𝐴1
√2𝑔ℎ1 +

𝑎3

𝐴1
√2𝑔ℎ3 +

𝛾1𝑘1

𝐴1
𝑣1

𝑑ℎ2

𝑑𝑡
= −

𝑎2

𝐴2
√2𝑔ℎ2 +

𝑎4

𝐴2
√2𝑔ℎ4 +

𝛾2𝑘2

𝐴2
𝑣2

𝑑ℎ3

𝑑𝑡
= −

𝑎3

𝐴3
√2𝑔ℎ3 +

1−𝛾2𝑘2

𝐴3
𝑣2

𝑑ℎ4

𝑑𝑡
= −

𝑎4

𝐴4
√2𝑔ℎ4 +

1−𝛾1𝑘1

𝐴4
𝑣1

            

 

 

(22) 

 

In these equations, ℎ𝑖 is tank fluid height, 𝐴𝑖 is cross 

section, 𝑎𝑖  the cross section of the output. The exerted 

voltage on pump i  equals with 𝑣𝑖  and the fraction of 

current of it would be 𝑘𝑖𝑣𝑖 . Also 𝛾1, 𝛾2 ∈ (0,1)  are 

relevant to regulation of input valves. Gravitational 

acceleration is g and the outputs of the system which are 

the surface of the first and second tank are measured with 

𝑘𝑐ℎ𝑖. Finally, the quantities about parameters mentioned 

with considering the experimental condition are regarded 

in Table I. In order to make the system linear around the 

operation point, parameters are mentioned in Table II. 

Then with considering the mentioned quantities, the linear 

state equations would be defined as: 
 

𝑑𝑥

𝑑𝑡
=

[
 
 
 
 
 
 −

1

𝑇1
0

𝐴3

𝐴1𝑇3
0

0 −
1

𝑇2
0

𝐴4

𝐴2𝑇4

0 0 −
1

𝑇3
0

0 0 0 −
1

𝑇4]
 
 
 
 
 
 

𝑥 +

[
 
 
 
 
 
 

𝛾1𝑘1

𝐴1
0

0
𝛾2𝑘2

𝐴2

0
1−𝛾2𝑘2

𝐴3

1−𝛾1𝑘1

𝐴4
0 ]

 
 
 
 
 
 

𝑢            

 

 

(20) 

 

 

𝑦 = [
𝑘𝑐 0 0 0
0 𝑘𝑐 0 0

] 𝑥            
(21) 

 

𝑇𝑖  are calculated below: 

 

𝑇𝑖 =
𝐴𝑖

𝑎𝑖
√

2ℎ𝑖
2

𝑔
, 𝑖 = 1,2,3,4            

(22) 

 

In this experiment, the height of every tank and the 

most water discharge through pumps are around 30 cm 

and 2.5 liter per minutes respectively. Therefore 

maximum voltage of pumps id considered around 12.5. 

Consequently, the maximum voltage that can be supplied 

to the pumps is estimated to be around 12.5 volts. These 

limitations are regarded as the constraints to the issue. 

These constraints are intended to serve as design 

constraints during the controller design phase. 

Furthermore, the desired target heights are H1 set at 27 

and H2 set at 9. 
 

0 ≤ ℎ𝑖 ≤ 30            (23) 

 

 

0 ≤ 𝑣𝑖 ≤ 12.5            (24) 

4. Simulation Results  

Similar to linear MPC, nonlinear MPC computes 

control inputs at regular intervals by utilizing a blend of 

model-based prediction and finite optimization. 

Conversely, barrier function-based MPC converts a 

constrained optimization problem into an unconstrained 

or equally constrained problem, allowing for the 

application of efficient optimization techniques. This 

study examines the simulation of two methodologies, 

namely nonlinear MPC and barrier function-based MPC, 

using MATLAB. 

Table II. The quadruple tank system operating point 

values 

Amount Dimentions Parameters 

(12.4,12.7) cm (ℎ1
0, ℎ2

0) 

(1.8,1.4) cm (ℎ3
0, ℎ4

0) 

(3,3) V (𝑣1
0, 𝑣2

0) 

(3.33,3.35) cm3/𝑉𝑠 (𝑘1, 𝑘2) 

(0.7,0.6)  (𝛾1, 𝛾2) 
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Fig.2. The schematic of the system with MPC and PID 

controllers 

The proposed quadruple tank system considers tanks 

3 and 4 as inputs to tanks 1 and 2. The nonlinear MPC 

algorithm is employed to address constrained nonlinear 

systems. Figure 2 shows the schematic of the system with 

MPC and PID controllers. The parameters and 

coefficients of the controllers and horizon times are 

reported in Table III. The outcomes of the nonlinear MPC 

controller and variations in the Cost Function are 

presented in Fig. 2 and Fig. 5. As depicted in Fig. 4, the 

designed controller effectively accomplishes the tracking 

task. Additionally, the design requirements are fully met. 

 

 
Fig. 4. Response of the nonlinear model predictive 

control input 
 

The results in Figures 6 and 8 illustrate the outcomes of 

MPC utilizing barrier functions and the corresponding 

variations in the Cost Function. Upon examination of 

Figures 6 and 7, it is evident that all specified conditions 

have been met. Ultimately, the system has successfully 

attained the intended output. The comparison of the two 

approaches has revealed that the barrier function-based 

MPC exhibits a swifter response compared to the 

nonlinear method. Furthermore, the former method 

demonstrates a lower cost function than the nonlinear 

MPC approach. Conversely, the nonlinear MPC approach 

requires greater control effort. The findings indicate that 

both methods perform well in simulation and meet 

stability requirements. Additionally, the comparison 

conducted in this study serves to elucidate the distinctions 

between constrained and unconstrained optimizations. A 

PID controller is a feedback control loop utilized 

extensively in industrial systems. To validate our 

simulation, we conducted a comparison between a PID 

controller and our proposed MPC controller. Figure 9 

illustrates the comparison between a nonlinear MPC and 

a PID controller. The comparison focused on Tank 1 and 

Tank 2, which are analogous tanks. The findings indicate 

that the nonlinear MPC method achieved stability more 

rapidly than the PID controller. Additionally, no 

disturbances were observed in the nonlinear MPC, 

whereas the PID controller exhibited disturbances leading 

to instability. 

 

 
Fig. 5. Cost function of simulation in nonlinear MPC 

 

 

 

Table III. The parameters and coefficients of 

the controllers and horizon times  

Parameter Value 

𝑇𝑃 500 

𝑇𝐶  1 

V1(0) 3 

V2(0) 3 

𝜇 0.5 

lb 0 

ub 17 

 

 
Fig. 3. Response of the nonlinear model predictive 

control state 
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5. Conclusion 

This study investigates MPC methods based on Lyapunov 

function. Specifically, it explores two different techniques 

for implementing MPC in a closed-loop system with a 

limited-time state. These techniques include a nonlinear 

MPC controller that utilizes constrained optimization 

methods, and a barrier function-based MPC controller that 

introduces barrier functions to transform the constrained 

optimization problem into an unconstrained optimization 

method. The study conducts simulations to evaluate the 

performance of these methods in tracking the quadruple 

tank. The results indicate that both methods effectively 

track the input, but the unconstrained optimization 

method requires fewer calculations and incurs lower 

costs. Additionally, the study notes that while MPC based 

on Lyapunov prioritizes system stability, it may not 

necessarily represent the most optimized approach. 
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