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Recently, the guaranteed cost consensus problem of multi-agent systems has
attracted the attention of researchers. This paper tackles the challenge of event-
triggered guaranteed cost leader-following consensus in heterogeneous uncertain
nonlinear fractional-order multi-agent systems employing observers. The agents
have different fractional-order dynamics coupled with uncertainties in their state,
input, and output. To optimize communication resources, the paper introduces an
event-triggered strategy, ensuring that updates to the control protocol occur only
upon the satisfaction of the triggering condition. Leveraging this strategy and
applying the fractional Lyapunov direct method, the problem is formulated. To
obtain control and observer gains, a systematic approach algorithm is proposed
using Linear Matrix Inequalities (LMI), with corresponding criteria established to
guarantee guaranteed cost consensus. The effectiveness of the proposed method is
validated through a numerical simulation, with comprehensive results presented.
This research not only addresses a complex problem in multi-agent systems but
also contributes a practical and resource-efficient solution, showcasing its
potential applicability in real-world scenarios.

1. Introduction

In multi-agent systems (MASs), multiple simple
agents cooperate to perform a large-scale complicated
task. In the last decade, due to the wide practical
in various
unmanned aerial vehicle formation [1], sensor network
synchronization [2], power grid synchronization control
[3], and intelligent transportation [4], there have been
many studies on the coordination of MASs. The
consensus problem as one of the cooperative control
problems indicates that all agents reach a common final
state through the exchange of local information with their
neighbors. Specifically, the leader-following consensus
problem arises when there is a leading agent to provide
the agreement state. Therefore, the control objective of
MAS can be realized by controlling only the leader, which
not only significantly simplifies the analysis and design of
MAS but also helps to save energy and reduce control

applications of MAS

costs [5].
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Researchers have designed many controllers,
including optimal and adaptive control [6, 7], distributed
impulsive control [8], and fuzzy control [9], to achieve
leader-follower consensus of homogeneous MASs where
all agents have the same dynamics. However, in many
cases, the agents are heterogeneous, which means that
their dynamics and even the dimensions of their state
space are different.

Physical systems are subject to various model
uncertainties and various practical nonlinear phenomena,
which may originate from changes in system parameters
or modeling errors. Failure to properly deal with these
phenomena can reduce the closed-loop performance of
systems or may even make systems unstable. Therefore,
the robust control of MASs has been the target of many
researchers in recent years [10-12]. In [11] the robust
control problem of linear homogeneous MASs with
different norm-bounded uncertainties is studied. Further
by using a distributed observer-based protocol, the robust

fields including
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control problem synthesized with transient performance is
studied in [12] .

In addition, fractional-order models which are an
extension of integer-order models, can more accurately
describe systems due to their superior performance in
depicting the memory and intrinsic properties of different
types of materials and processes [13, 14], for example,
motion of multiple agents in viscoelastic materials or
macromolecule fluids.

In recent years, many research works have addressed
the issue of consensus control of fractional-order MASs
(FOMASS) [15-22]. Authors in [15] based on the linear
matrix inequalities, proposed a distributed state feedback
consensus protocol for consensus of heterogeneous
FOMAS. In [16] Gong studied a distributed leader-
following of heterogeneous nonlinear FOMASs with an
unknown leader. In [17, 18] Gong et al. investigated
adaptive robust leader-following consensus control for
uncertain nonlinear FOMASs. In [19] Gong et al.
proposed a distributed robust consensus control of
heterogeneous FOMAS:s. In [20] Gong et al. investigated
the output feedback consensus control problem for a class
of nonlinear FOMASs. In [21] Gong et al. investigated
robust adaptive fault-tolerant consensus control for
uncertain nonlinear FOMASs. In [22] Wen et al. proposed
an observer and virtual exo-system based output
consensus of leader-following heterogeneous nonlinear
FOMAS:s.

In all the above aforementioned works, the consensus
problem of FOMASs are obtained while transmission
information between agents are continuous which is
difficult to implement in practice. Periodic sampling is a
good method to transmission information between agents.
However, when the sampling period is very small, it can
lead to a loss of communication resources. Thus, time-
triggered sampling is used instead of event-triggered
sampling in recent works. Many research works have
been done to apply event-triggered strategies to the
consensus problem of MASs [23-27]. Authors in [23]
investigated the event-triggered leader-following
consensus problem for MASs with semi-Markov
switching topologies.

In [24] Li et al. proposed a dynamic event-triggered
control for heterogeneous leader-following consensus of
MASs based on input to state stability. In [25] Yang et al.
studied the leader-following output consensus problem of
heterogeneous linear MASs, where followers are subject
to parameter uncertainties. In [26] Ren et al. investigated
the consensus of general linear FOMASs by distributed
event-triggered strategy. In [27] Hu et al. proposed the
event-triggered leader-following consensus for FOMAS:s.

In practical uses of MASs, agents can only have
limited energy resources to perform certain tasks such as
cognition, transmission information, and movement.
Recently, the guaranteed cost consensus (GCC) problem
of MASs has abundantly attracted the attention of
researchers [28-32]. In [28] Wang et al. investigated the
GCC control for MASs with fixed interaction topologies.
In [29] Wang et al. investigated the guaranteed
performance consensus for the Lipschitz class of
nonlinear MASs. In [30] Luo et al. proposed event-
triggered GCC for uncertain nonlinear MASs. In [31] Luo
et al. proposed observer-based event-triggered GCC
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control for second-order MASs. In [32] Tian et al.
investigated the leaderless GCC for uncertain, delayed
nonlinear FOMAS:s.

Motivated by the above discussion, the event-
triggered leader-following GCC for heterogeneous
uncertain nonlinear FOMASs based on observers
proposed in this paper.

The main contributions of this paper can be
summarized as follows:

- An observer-based output feedback control for
event-triggered consensus of nonlinear FOMASs with
state, input, and output uncertainty is proposed.

- GCC by the event-triggered strategy for FOMASS is
obtained.

- To obtain control and observer gains, a systematic
approach using linear matrix inequality (LMI) algorithm
is proposed.

The rest of the article is organized as follows: In
Section 2 essential concepts and useful lemmas are
provided. Section 3 presents the main theorems. A
numerical example is provided in Section 4 and finally, in
Section 5 conclusion remarks are given.

2. Preliminary and Problem Formulation

A. Notations

In this paper, ||.|| and ® represent the Euclidean norm
and the Kronecker product, respectively. Iy, € R™™ is an
identity matrix. diag{+} and blockdiag{*} denote the
diagonal matrix and the block diagonal matrix,
respectively. The statement A > 0(= 0) and A < 0(< 0)
represent symmetric positive and negative definite (semi-
definite) matrices, respectively. The matrices A™1 and AT
denote inverse and the transpose of A, respectively. N £
{1,2,..,N}.

B. Graph theory

Consider a MAS composed of N follower agents and a
leader. The interaction among N followers can be denoted
by a weighted digraph G = (V,E) , where V =
{v, v, ..., vy} and € SV X V represent the set of nodes
and the set of directed edges of G, respectively. An edge
& = (v]-, vi) € £ means that agent j can transmit
information to agent i and they are called the parent node
and the child node, respectively. A = [a;;] € RNV
denotes the weighted adjacency matrix where a;; > 0 if
g; € € and a;; = 0 otherwise. Besides a;; = 0 fori € N.
The diagonal matrix D = diag{d,,d,,...,dy} is the
degree matrix where the elements are defined by d; =
Z?’=1 a;; and the Laplacian matrix of the weighted digraph
G is defined as L=D— A = [lij] ERNN e I; =
Yia; and l;; = —a;; for i # j. Letting node 0 be
associated with the leader, the communication among all
followers and the leader can be described by a new
directed graph G = (V,€), where V =V U {v,} and € C
Vx7V. The diagonal matrix B = diag{by,b,, ..., by}
denote the weights of the directed edges from leader to
followers in the digraph G. If b; > 0, there exists a
directed edge from the leader to the follower i and b; = 0
otherwise. A digraph contains a directed spanning tree if
there exists a node called root, which has no parent node
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and this root node has directed paths to all other nodes in
this graph.

Lemma 1 [22]: The directed graph of all agents has a
directed spanning tree with the leader rooted if all
eigenvalues of matrix H = £ + B have positive real
parts and vice versa.

C. Fractional-order operators

The Caputo and Riemann-Liouville are two well-known
fractional-order derivatives, since he initial conditions in
Caputo fractional-order derivative is as same as the
integer-order differential equations, thus to model the
FOMASSs we use the Caputo derivative in this paper.

Definition 1 [33] (Riemann-Liouville Integral): The
Riemann-Liouville fractional-order integral of function
x(t) of order « is defined as:

RerEx(t) = %f:o(t —10)% x(1r)dt 1)

where a € (n — 1,n],n € Z* and I'(s) = fow t5le tdt
is the Gamma function. For convenience, we use the
notion I%x(t) to denote -1 x(t) later.
Definition 2 [33] (Caputo Derivative): The Caputo
fractional-order derivative of function x(t) of order «
defined as:

EDEx () = I"x™(t) =

1 t xMW()

F(n—a) fto (t_.[)a+1—n
where n is a positive integer satisfyingn —1 < a <n.
For convenience, we use the notion D%x(t) to denote
D& x(t) later.

(2

Lemma 2 [34] (Fractional Lyapunov direct method): Let
x = 0 be an equilibrium point for the nonautonomous
fractional order system D%x(t) = f(t,x) where a €
(0,1], f:[tg, ) X 2 - R™ is piecewise continuous in ¢t
and locally Lipschitz in x on [ty,00) X 2 and 2 € R" isa
domain that contains the origin x = 0. Assume that there
exists a Lyapunov function V(t,x(t)) and class K
functions a; (i = 1,2, 3) satisfying:

a (lxl) = V(t, %) < ay(llx|D 3)

DV (t,x) < —as(|lx]) 4)

Then the equilibrium point is asymptotically stable.

Lemma 3 [32]: For a differentiable vector x(t) € R", a
symmetric  positive-definite P and a € (0,1] the
following inequality is true:

De(xT(t)Px(t)) < D*xT(t)Px(t) +
xt()PD%x(t)

D. Problem description

Consider a heterogeneous uncertain nonlinear FOMAS

with N agents and a leader. The dynamics of agent i is
described by:

(6))

Dx;(t) = (A; + 04; (D) )x; () + ©)
(B; + AB; (1) Juy(t) + fi(x:(1))

yi(t) = (C; + AC;(£))x; (1)
i e Nu{0}
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where 0 <a <1, x; € R", y; € R™ and y; € R% are
the pseudo-state, control input and measurable output
vectors of agent i, respectively. The matrices 4; € R™",
B; € R™™i and C; € R°”" are nominal parts and
AA;(t) , AB;(t) and AC;(t) represent time-varying
parameter uncertainties and fi(xl- (t)) represents the
nonlinear dynamic function.

Definition 3: The MAS represented in (6) said to achieve
leader-following consensus if %imllxi(t) —xo(®|l =0,
VieN.

Assumption 1: The pairs (4;, B;) are stabilizable and the
pairs (C;, A;) are detectable Vi € N U {0}.

Assumption 2: Time-varying parameter uncertainties can
formulated as:

[44;(t) 4B;i(0)] = M;H;(t)[4; E}]: 7

_ AG(®) = NiH; ()

where M;, N;, A;, B; and C; are real constant matrices of
appropriate dimensions, and H;(t) is the real unknown
time-varying matrix which satisfy Hf (t)H;(t) <1 Vi €
N u{0}.

Assumption 3: The nonlinear functions f;(x;(¢)): R* -
R™ are continuous functions that satisfy the following
Lipschitz conditions:

1f: () = il < 6:llx =, ®)
£ COll < 6; Il

1 () = /oIl < gillx =yl )

where @; and o; are known constants Vi € N U {0}.

Assumption 4: The interaction topology of all agents
contains a directed spanning tree with the leader as the
root.

3. Observers and virtual systems

This paper allows systems pseudo-state to be
immeasurable. For each agent, we consider an observer
that is described as follows:
DR,(t) = A%, (t) + B (t) + f(2:(1))
- Ei(}’i(t) - Cifi(t)).
i e Nu{0}
where %;(t) € R™ denotes estimate of the pseudo-state
x;(t) and E; € R™*°i denotes the observer gain matrix
and we define observer error as 1;(t) = x;(t) — X;(t).
Moreover, for each follower we consider a virtual
system that is described as follows:
D%, (t) = (Ap + BoKo)¥;(t) + fo(%i(t)) (11)
+ Fv;(t), i€EN
where X;(t) € R™ denotes virtual pseudo-state of agent i
and F; € R™"™ denotes the consensus gain matrix and we
define virtual consensus error as {;(t) = %;(t) — %, (¢).
Control inputs is designed as:
up(t) = Ko%o (1), w;(2)
= K;%;(t) (12)
+ W () — %)), ieN

(10)
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Figure 1: Observer-based event-triggered control scheme for the follower i.

where K; € R™*™ and W; € R™*" denotes the pseudo-
state feedback gain matrix and consensus feedback gain
matrix.

4. Event-triggered control strategy

The approximation error between the current instant and
the last event instant for virtual pseudo-state of agent i
defined as:

e(t) = fi(ffq) - X% (0),

iEN

The event-triggered consensus control protocol
described as:

vi(t) = X)-q a4 (fi(tliq) —X; (tljcj)) + (14)
b (%(th,) — %o(t)), i€ N
where X; (t,i(i) is the virtual pseudo-state of agent i at the

vee [ththe) 3

k; time event-triggered.
For agent i the event-triggered strategy can be designed
as follows:
ti =0,
tl’%i+1
= inf{t > tllci|eiT(t)Tiei(t) > pv] ()Q;v;(1)}
ieEN
here the time sequence t; represents the event-triggered

(15)

for agent i, the adjacent sampling instants represent by ¢
and tf,, . T; =T/ and Q; = Q] are positive-definite
matrices, and event-triggered threshold is shown by a
scalar value p € [0,1] . When t = tliq , to update the
control protocol, the new sampled virtual pseudo-state is
conducted to the sub-controller.

The observer-based event-triggered control scheme for
follower i is shown in Figure 1.

G. Guaranteed cost

The guaranteed cost functions related to the leader’s
system, virtual systems, and follower’s systems are
defined as follows:

Jeo = 1 [1% (jao () + juy (O] (16)
S = lim [1% (j (O + Jp (0 + 1 ®)], 1 €N 17
Je = lim [1 ¢ (j{(t) +jv(t))] (18)
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jui (t) = ul.T (t)Guiui (t)! [ € IV U {0} (21)
j{(t) = ﬁvzl{(iT(t)G{ici(t)} (22)
jv(t) = §V=1{ViT(t)FiTGviFivi(t)} (23)

where 7;(t), ¢;(t) = x;(£) — %,(6) , w(©), ¢;(t) and
v;(t) are observer error, consensus error, control input,
virtual consensus error and the event-triggered consensus
control protocol of agent i, respectively and G,, >0,
Gy, >0, Gy; >0, G;;>0 and G, >0 are given

symmetric matrices.

Definition 4: The MAS represented in (6) with cost
functions (16), (17) and (18) is said to achieve leader-
following GCC if there exist positive scalars J , J%; and
J% such that the leader-following consensus is achieved
and cost functions are satisfies the inequalities J,, <
Jros Tz <Jx, and Jx < Jz where J% , J%, and Jx are called
guaranteed cost upper bound.

Lemma 4 [35]: For any real vector with the appropriate
dimension x and y, the following inequality is true:

T T T -1,,T
x'y+y'x<Bx'x+p7y'y 24)

where B is a positive number.

Lemma 5 [36] (Congruence Transformation): For a
symmetric matrix A and a invertible matrix T, TTAT is
negative definite if and only if 4 is negative definite.

Lemma 6 [36] (Schur Complement): For a symmetric

A
matrix A and a symmetric invertible matrix g, [WT 2]

is negative definite if and only if ¢ and A — pg~1pT are
negative definite.
3. Main results
To achieve leader-following consensus according to
mentioned strategy, first we simplified the consensus
error as follows:
8;(t) = x;(£) — x,(8)
=0 -2 -
=x;(8) — %,(6) + §;(2)
—1o(t)
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thus if o (t), ¢;(t) and @;(t) = x;(t) — %;(t) are stable
then &;(t) is stable.

In three steps we achieve stability of n,(t), {;(t) and
@;(t) = x;(t) — X;(t), respectively.

Step 1: Stability of leader’s system and observer
error

In this step first we determine K|, considering to stability
of the leader’s system and desirable dynamics then we
determine E|, considering to dynamics of leader’s system
and stability of observer error of leader.

Theorem 1: Considering Assumption 1-3 are met and
1o(t) = 0. For leader’s system (6) if there exit a matrix
P, = P£O > 0, a matrix ¥, and positive constants &, ,
B, and w,, satisfying the following condition:

11 »
m, = [ o1 %Zj <0 (26)
where
Iy, = XxgAD + AoXx, + Y, BS + BoYy,

. + (?7‘0 + ﬁxo)MOMg + (‘)xoln
Pxoy = [Xong YXToBg Xxo YxTo]
Bxo, = —blockdiag(axOIn, By Iy Wy, 05 21, Gk
Then, under control input (12) with K, = Y, X', the

leader’s system is asymptotically stable with guaranteed
cost upper bound [y = x§(0)P, x,(0) for the cost

function J,, = tlim[l“juo ]
Proof: Apply the control input (12) to the leader’s
system (6) yields:

D%xy(t) = (Aq + AAo(t)

+ (By + ABy (1)) Ky )xo () @7
- (Bo + AB, (t))Kono(t)
+ fo(x0(®))
Consider following Lyapunov candidate function:
Vo (8) = X8 (OPr o (0) 28

where P, is an unknown symmetric positive-definite

matrix.

Taking the a-order derivative and using Lemma 3 yields:
D“VxO(t) < ((AO + AAy(t) + (Bo + (29)
AB, (t))Ko)xo ®) - (Bo + AB, (t))Kono ©)+

foo(0))) Pego(®) + x5 (DR, (4o +
AAy(6) + (Bo + ABo(£)) Ky )xo (t) — (Bo +

AB, (t))Kono )+ fo (xo (t)))
Assuming 1,(t) = 0 and using Lemma 4 yields:

DV, (t) < xF (£) 2y, %0 (1) (30)

where
2y, = (Ao + BoKy) P, + Py (A + BoKy) +
aytATAy + BrlK B{BoK,y + wi 631, +
Wy PeyPeo + (@y + Brg )Py MoM Py,
According to fractional Lyapunov direct method,
leader’s system is asymptotically stable If 2, < 0.
Furthermore, we consider following cost function:
]xo = 55’2 [Iajuo (t)] (31)
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g (6) = UL ()Gt (£) =

x3 (KT Gy Koo () 32)
IfD“VxO(t) +ju0(t) <0:

juo (t) < _DaV;co (t) (33)

Then for t € [0, ), the @-order integrating both sides
yields:
197,y (£) < Yy (0) = Vs, (8) .

Since D*V,,(t) <0, tlim Ve, (t) = 0, therefore:
Jxo = Lim[1%y, (D] < V5, (0) = 35)
x5 (0) P, x0(0) = J5,

So, the upper bound 5, of the quadratic guaranteed cost

function can be obtained.
DanO (t) +ju0 (t) S xg(t)zxoxo (t) (36)

where
5o = (Ao + BoKg) Py, + P, (Ag + BoKy) +
ay LAY Ay + BrlK B{BoK,y + wi 631, +
Wy Pey P + (ay, + ﬁxO)PxoMgMg P, + K{ G, K,
For linearization the inequality 2, < 0 by using Lemma
5 and pre- and post-multiplying both sides of the
inequality by X, = P; ' and let Y, = K P, ', the
following obtain:
X ZnoXno = XxoAb + AgXy, + YE B +
ByYy, + a5t X AL Ao Xy, + Brl Yo BE BoYy, +
WelO2X Xy + Wyl + (@, + Bry ) MoM§ +
Ve Gy Yy, <O
By employing Lemma 6, we can obtain (26) and this
completes the proof.

(37)

Remark 1: In solving LMI in Theorem 1, to reach the
desirable dynamics of pseudo-state like D%x(t) =
Ayx(t), we can use objective (Ag — Ag) Xy, + BoYy, to
be minimized.

Theorem 2: Suppose Assumption 1-3 are met and we
determine K from Theorem 1. For the leader’s system
(6) if there exit P,, = P7 > 0,and P, =P} >0, a
matrix ¥, and positive constants @, <Bp, ¥n, ‘En,
Wy, Oy, By, Vx, and @, satisfying the following

condition:

H’7011 H”012 Proy 0 (38)
m=| © e Proz| < 0
Mo * * %7)01 0
* * * %7’02
where
My, = APy, + Prodo + Co Y + Yy Co + (ay, +
Yo ) K3 Ba BoKy + w031, + Gy + KL Gy K
My, , = —KJBYP,, — K G, Ko
Iy,,, = (Ao + BoKo)" Py, + Py (Ao + BoKo) +

(axg +~ﬁ770)’4€‘40 + (ﬁxo + yﬂo)KgégéoKo +
£n0C0TCO + a)ergln + KOTGuOKO
Pnoy, = [BooMo  PpoMo  ByoMo YpoNo  By]

Pao, = [PsMo PyMo  PMo  Py]
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47701 =
—blockdiag(anoln, Bnolns Yo Ins €noIns wnoln)
Dy, = —blockdiag(axoln, Bxolns VacgIns waIn)

Then, under control input (12) and observer (10) with
E, = P77_01 Y,,» leader’s system and observer error are

asymptotically stable with guaranteed cost upper bound
Jxo =10 (0)P,,1m6(0) + x5 (0P, x,(0) for cost function
Jeo = lim [1% (ja, () + ju,®)) |
Proof: According to observer error definition n,(t) =
Xo(t) — %, (t) we can get:
Do (t) = (Ap + EoCo — AB (D)Ko (8) +
(440 (t) + ABo (DK, + EqAC, () )x0(8) +
fo (xo (t)) —fo (550 (t))
Consider the following Lyapunov candidate function:
Vno (t) = ng(t)Pnonﬂ(t) + xg(t)PxoxO(t) (40)

(39

where B,  and P, are unknown symmetric positive-
definite matrices.

Taking the a-order derivative and using Lemma 3 yields:

DV, () < ((Ao + EoCo — (41)
ABy(t)Kp)ne(t) + (AAO (t) + 4By (DK, +
EyAC, (t))?o(t) + fo (xo (t)) -

fo(2a()) Prgo(®) +n§ (0B, (4o +
EoCo — 4By (t)Ko)no(8) + (AAo ©+

ABy (DK, + EyAC, (t))xo(t) + fo (xo (t)) -
fo(%e())) + (40 + 24, (&) + (B, +

AB, (t))Ko)xo @) - (Bo + AB, (t))Kono ®) +
folxo(®))) Peyxo ®) + x5 (0P, (49 +
AAy(6) + (B + ABo(£)) Ky )xo(t) — (B, +
AB, (t))Kono @® + fo (xo (t)))

By using Lemma 4 yields:
T
1no(t) 1o (t)
a < 42
Do ® = o] 2o lxo() “2
where
D [2”011 z:77012]
o * z:”022
2,,011 = (Ap + EoCy)" Py, + Py, (A + EoCp) +

(ano + ny)KgEggoKo T Wy, 931” + wgolpﬂopno +
- - - T

(el + Bok + v ) Py Mo M3 By, +

&0 ProEoNoNg Eg Py,

Znoy, = —KEBIP,,

Loy, = (Ao + BoKo)" Py, + Py (Ao + BoKp) +
(@x + Bro)A5 Ao + (Bxy + Vo )Ka By BoKo +
(azl + Bel + Vi) PeyMoM§ Py, + £, C3 Co +
Wy 051, + Wi Py Py,
According to the fractional Lyapunov direct method, the

leader’s observer error is asymptotically stable If 2, < 0.

Furthermore, we consider the following cost function:
Jxy = lim 1% (1, ) + iy ©)] (43)
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Jno () = 15 () Gy 1o (1)

(44)

Jua ) = U OG00(0) = (1 (0) ~ 5)
no(t)) KoTGuoKo(xo ) — 1o (t))
IfD“VnO(t) +j,70(t) + Jiu, (£) < O:

o (©) + Jug () < =D“T3 (0 .

Then for t € [0, ), the @-order integrating both sides
yields:

1% (g (6) + g (£)) < Vg (0) = Vo (6) “7)
Since DV, (t) <0, tll_)rg V,, () = 0, therefore:
Jro = U [1% (jno (O + juy®)] < Voo O = (a8

15 (0)P,,10(0) + x5 (0) Py, %, (0) = J3,
So, the upper bound 5, of the quadratic guaranteed cost
function can be obtained.
DV () + i, (0) + Jiyy (1) <
1o(t) "y 1o (t)
xo()] 7 [xo (1)
where

$ :[277011 %”012]

(49)

No
* 2:770 22

09y, = (Ao + EgCO)T By + By (Ao + EoCo) +
(g + Vo )KE BEBoKy + w0, 031, + wy 1By Py, +
(a7701 + ﬁﬂ_ol + %’;)I)PTIOMOMSPHO +

&Py, EQNoNJ ES By, + G + K{ Gy Ky

£, =—KiBYP, —KiG, K,

n012

Zi0,, = (Ao + BoKo) Py + Pry (Ag + BoKo) +
(@x + Bro) A5 Ao + (Bxy + Vo )Ka By BoKo +
(azd + Brl + Vi) PeyMoM§ Py, + £, C3 Co +
Wy 051, + Wi Py Py, + Kg Gy Ko
By employing Lemma 6 and let ¥, = P, E, we can
obtain (38) and this completes the proof.

Step 2: Stability of virtual consensus errors
In this step, we determine F; and T; considering to
stability of virtual consensus errors.

Theorem 3: Suppose Assumption 1-4 are met and we
determine K and E, from Step 1. For virtual systems
(11) if there exist matrices Xy = X? >0,and T; = TiT >
0, a matrix ¥ and positive constants wg, satistying the
following condition:

H(11 Y( W{l (50)
Iy =| * =T s, | < 0
* * Cl,{l
where
My = In® (X (Ag + BoKo)" + (Ag + BoKo)X;) +

T
w(+Y5 +Y5

p<1:[IN®X€ (IN®X()(HT®In) IN®X5 Yg
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P, = [O (IN®X§)(HT®In) 0 Y(T]
¢, = —blockdiag(wgeo‘z,p—lQ—l’ Gé_l' G;1)

Then, under the event-triggered consensus control
protocol (14 ) with F; = YL-X(_1 and T; = Xglf"ng_l s
virtual consensus errors are asymptotically stable with
guaranteed cost upper bound Ji; = {T(O)(IN(X)P()( (0)
for cost function [y = tlirg [1"‘ (ji ® +j,,(t))].
Proof: According virtual consensus errors definition
g;(t) = x;(t) — 2, (t) we can get:
DeGi(t) = (Ag + BoKo)(i(t) + Fvy () +
fo(k/i(t)) - fo(fo(t)) + EqCono(t) +
EqAC, (£)x0(8)
Consider the following Lyapunov candidate function:

GO =)o, %O=dorgo P

(51)

where P; is an unknown symmetric positive-definite

matrix.

Taking the a-order derivative and using Lemma 3 yields:
DV, (t) < D¢/ (OP;¢,(t) + (53)
G (©)P;D*G(t) = [(Ao + BoKo)Gi(t) +
Fo(8) + fo(%:(8) = fo(Ro(®)) +
EoCalo(£) + EeACo ()20 (8)] PrGi() +
IF(OP;[(Ag + BoKo)Si () + Fivy(t) +
fo (k/l(t)) —fo (550 (t)) + EgCono(8) +
EqACy (D)o (t)]

In Step 1 we prove 1,(t) and x,(t) are asymptotically

stable then:

lim (0§ ()CTESPGi() + T (P EaCono(D))  (54)

=0

lim (xF (DACT (DEFPGi(0) (55)
+ ST (OPEACH ()Xo (1))
=0

And we ignore these parts. Using Lemma 4, yields:
DV, (1) < {7 ()((Ag + BoKo)P; + P; (A +
BoKo) + w6081, + wg,Pr Py )i (t) +

vl (OF P 3;(t) + I ()P, Fv(t)
We can obtain the following from the event-triggered
consensus control protocol:

v (t) = XV ay; (fi(tliq) — % (tljcj)) + (57)
bi (%i(th,) — 26(0) = 21y ay; (%(0) +
ei(t) =% () — (1)) + bi(F(t) + ex(t) -
£(8) = 2y iy (Gi(0) + e (®) = §(0) =
&()) + bi(G:() + () = X0y by (e(0) +
G®)
This yields that:
DV ) < B (T O(Co + Bk B+ (58)
P;(Ag + BoKy) + w7 6031, + wg PrP; )i (1) +

(56)
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(20 P (60 + 6,0)] Pegi(o) +
HOTA A CIGRIAG) )

where
{® =@, ..M € RV
e(t) = [eT(t), .., e ()]" € RVN1
F =[(h,®F)T, ..., (hy®F)T]T € RNnxNn,
h; 2 ithrow of 3
wy = blockdiag(wglln, (uqzln, ...,a){N]n) € RNnxNn

T = blockdiag(T;,T,, ..., Ty) € RNV
Q = blockdiag(Q,, Q,, ..., Qy) € RNXNR
G; = blockdiag(Gg,, ..., Ggy)

G, = blockdiag(G,,, ..., G,))

Then (58) can be written into a compact form as follows:
DUV () < ¢"(8) (In® (4o + BoK) i+ (59)
P;(Aq + Boko)) + (Ix®P; e (1y®P;) +
w7'02) <) + (C0) +
e()) FT(Iy®P,){(t) +
MO (Iv®P)F(S(1) +e(D))

Based on conditions (15) and (59) the following
inequality is derived:

« (O] 5 [$©
D V((t)s[e(t) %[oo] + (60)

Li{el (OTie(t) — pv] Qv ()} =

[28] %, 28 +eT(O)Te(t)

p 3 {[2 iy (5,00 +
6©)] e[ty (6@ +6®)]} =

28 D 28 +eT(O)Te(t) — p(d(6) +

e(®) (H'®1,)Q(H®L)({(t) + e(®))

where
s = 2:511 2:512
N R

%, = In® (Ao + BoKo) TPy + Py (Aq + Boko)) +
w7108 + (Iv®P ) (In®F;) + FT(Iy®F; ) +
(Iy®P;)F + p(H™®1,)Q(H®I,)

%¢,, = (IW®P)F + p(H'®1,)Q(H®I,)

Yy, =T+ p(H'®1,)Q(H®I,)

2

According to the fractional Lyapunov direct method,
virtual consensus errors are asymptotically stable if Z; <
0.

Furthermore, we consider the following cost function:

¢ = lim [ (jr 0 +),)] (61)
Je® = Sl (06,50} = ST O6E® (g
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jv(t) = §v=1{viT(t)FiTGviFivi(t)} = (((t) + (63)
e(t)) FTG,F({(t) +e()

If DV (2) + j¢ () + j,(t) < O:
Je(©) +J,(€) < =DV (6) ©64)

Then for t € [0, ), the @-order integrating both sides
yields:

19 (je (8) + o (8)) < Vz(0) = Ve (£) 65)
Since DV, (t) < 0, gl_)l’g V;(t) = 0, therefore:
= [1“ (j{(t) +j1;(t))] <V (0) = (66)

{T(O)(Iv®P;)3(0) = J;
So, the upper bound J} of the quadratic guaranteed cost
function can be obtained.

DV, (t) +j, (£) + j,,(t)s[g(t)] 5, [Z(t) L 67

(®) ®)
Li{el (OTie(t) — pv] ()Q;v; ()}
where - ~
& 2 11 2 12
%= [ (* iz22

%¢,, = In® (Ao + BoKo) TPy + Pr(Aq + Boko)) +
w05 + (In®P; )y (In®F; ) + FT(Iy®F;) +
(Iy®P;)F + p(H™®1I,)Q(H®I,) + G; + FTG,F
¢, = (IN®P)F + p(H'®1,)Q(H®I,) + F'G,F
£, = —T+p(H"®I,)Q(H®I,) + F'G,F

For linearization of the inequality fg < 0 by using
Lemma 5 and pre- and post-multiplying both sides of the
inequality by T; = Iz><,\,®P(_1 and let X; = P{l, Y, =
FP7 Y = [(®Y), ..., (hy®Y)TI", T; = X, T, X,
and T = blockdiag(Tl, Ty, ..., TN) the following obtain:
2oy 2, (68)

*

{22
where
Ze = In®(X (Ag + BoKo)" + (Ag + BoKo)X;) +
(Iv®X;)w; 05 (Iy®X;) + wy + Y + Y, +
p(In®X,)(H"®1,)Q(H®I,) (1y®X;) +
(Iv®X;)G, (Iy®X;) + Y/ G,Y;

Zv{lZ = Y{ +
p(1v@X,)(HT®1,)Q(H®I, ) (1, ®X;) + V76,1,
Z'{ZZ = _T +

p(In®X) (HT®1,)Q(H®I,)(In®X;) + ¥ G, Y,
By employing Lemma 6, we can obtain (50) and this
completes the proof.
Step 3: Stability of followers' systems and consensus
errors and observer errors for followers.
In this step for each follower first, we determine K; and
W; considering to stability of follower’s system and
consensus errors then we determine E; considering to
dynamics of followers' system and stability of observers'
eITors.

Theorem 4: Suppose Assumption 1-4 are met and we
determine K, and E, from Step 1 and F; and T; from
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Step 2 and n;(t) = 0. For ith follower’s system (6) if
there exit matrices X,, = X3, > 0, and X,,, = X}, > 0
and matrices Y, and Y ,, and positive constants a,,, B,
Yo Wopr Ax,y By, ¥V, and w,, satisfying the following
condition:

Iy, = . (69)
H(plll (pilz p(pll 0 Y(pl

* H(pizz 0 p(piz YX’I;

* * %‘/’11 0 0 <0

* * * Doy, 0

* * * * —Giil

where

My, =Xy, (A + BoKo)" + (Ag + BoKo) Xy, +
Y(lJTiBiT +BY,, + (O‘tpi + B‘Pi + chi)MiMiT + we;ln
17%12 =(4; -4, — BoKo)Xxi + BY,, + qul.BiT
My, = XAl + AiXy, + VBl + BiYy, + (o, +

BXi + YXI)MLM;F + (Dxil‘n.i

Poi, = [Yo.Bl Y5.Bl X, X,]

Z"Piz = [XXLA"!F XxiA~? YX'I;BLT YXT;EI.T Xxi]

G, = —blockdiag(a(piln,yxiln, W4, 07 21y, qul.l)

4‘Pi2 =

—blockdiag (o, I, BeIns Bx;In» Yo, In» 05,0721
Then, under control input (12) with K; = Y,CE.X,C_i1 and
W, =Y, X;1, ith follower’s system and consensus error

PiT i
is asymptotically stable with guaranteed cost upper bound

Jx; = @l (0)P,,9;(0) + x{ (0)P,,x;(0) for cost function
S = lim [1% (jp, () + ju,®) |
Proof: Apply the control input (12) to ith follower’s

system (6) yields:
D%;(t) = (A; + AA; + (B; + AB)K)x(¢) —

(B + AB)Km, (1) + (B + BBYW (i) — )
n:(8)) + fi(x: ()
According to the ith follower’s consensus errors
definition ¢; (t) = x;(t) — X;(t) we can get:
Da(pl(t) = (AO + BOKO + (Bl + (71)

ABHYW);(t) + (A; + B;K; + AA; + AB,K; —
Ay — BoKo)x;(t) — (B; + AB)(K; +
Wn(8) + fi(x;, () = fo(%:(8)) = Fv(8)
Consider the following Lyapunov candidate function:
V(pi(t) = (pT(t)P¢l(pl(t) + xiT(t)Pxixi (t) (72)

where P, and P, are unknown symmetric positive-

definite matrices.
Taking the a-order derivative and using Lemma 3 yields:

DV, () < ((AO + ByK, + (B; + (73)
ABYW);(t) + (A; + B;K; + AA; + AB;K; —

Ay — BoKo)x;(t) — (B; + AB)(K; +

Wi)m(t)T+ fi(xi (t)) —fo (fi(t)) -

Fivi(t) ) Ppytpi(t) + 0T (B, (4o +

BoKy + (B; + AB)W);(t) + (A; + BiK; +

AA; + AB,K; — Ay — BoKy)x;(t) — (B; +

AB;)(K; + Wm,(t) + fi(xi(t)) - fo(fi(t)) -
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Fivi(t)) + ((Al + AAL + (Bl + f _ Z‘Pill Z‘pilz
AB)K)x(t) — (B; + AB)Kn; () + (B; + . o 2gy,,
ABi)VVi((Pi(t) - le(f)) + f‘”ill = (Ao + BoK[) + BiVVi)TPq)i + ani(AO +

fi(xi(t)))T P x;(t) + x] ()P, ((Ai + AA; +
(B; + AB)K;)x;(t) — (B; + AB)Kn;(t) +
(B: + ABYW, (9:(8) = m:i(0)) + fi(:(0)))

In Step 2 we prove {(t) is asymptotically stable so
v;(t) = Z?’:l h;; (ej @) +¢; (t)) is asymptotically stable

then:
lim (—v] (T P,y 0:(t) = 9T (OB, Foi(®)  (74)
=0
and we ignore this part. Assuming 1;(t) = 0 and using
Lemma 4 yields:
T
(@) 5 @ (t) (75)

a [
D, (O = [xl-(t) 2| x,(t)

where

5 = 2901'11 Z‘Pilz
Pi * >

Z'(pin = (A, + BoK, + Bil/l/'i)TP(pi + ani(A0 +
BoKy + BW) + (a,! + v )W Bl BW, +
(%i + ﬁ<Pi + y‘Pi)P‘PiMiMiTP‘Pi + w¢ip¢ip¢i +
w,loll,

Lpigy T P,.(A; + B;K; — Ay — ByK,) + W/ B[ P,,

Pign

Z(piZZ = (Al + BiKi)TPxi + PXi(Ai + BiKi) +

(axt + BoR)ATA; + (Bt +vo )KT BT BiK; +

(ay; + By + Vay) P, MiM[ Py, + w021, + wy, PPy,
According to the fractional Lyapunov direct method, ith

follower’s system and consensus error are asymptotically
stable If X,, < 0.

Furthermore, we consider the following cost function:

I A CEING)] (76)
Joi () = @] ()G, ;(t) 77)
Juy (©) = ul ()Gy,u;,(0) = (Kix; (8) + (78)

Wipi(D)) Gu, (Kixi (£) + Wi, (©))
If DV, () + j, () + o, (£) < O:

j(pi (t) +jui (t) < _DaV(pi(t) (79)

Then for t € [0, ), the @-order integrating both sides
yields:

1% (i, (8) + iy (8)) < V3, (0) = V3, (8) (80)
Since D%V, (t) < 0, tlim V,,(t) = 0, therefore:

Jeo = lim [19 (jp (O + ju®)] < V@ = (g1
(pT(O)PQL(pL (O) + xl.T(O)lexl. (O) = ];,_
So, the upper bound Jx; of the quadratic guaranteed cost
function can be obtained.
DaV(pi (t) + j(pi (t) + jui (t) S
o] & [¢:(®
xi ()] T x(t)
where

(82)
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BoKo + BW) + (a,! + v, )W Bl B,W, +
(%i + ﬁ<Pi + y‘Pi)P‘PiMiMiTP‘Pi + w¢ip¢ip¢i +
w,yloll, + Gy, + W G, W,

Z(pilz = P(”i(Ai + BK; — Ay — BoK,) + VVL'TBL'TPxi +

VViTGuiKi

Z(piZZ = (Al + BiKi)TPxi + PXi(Ai + BiKi) +

(azt + BoH)ATA; + (Bt + vo )KI BT BK; +

(ay; + By + V) P MiM] P, + w621, +

Wy, PPy + K Gy K
For linearization of the inequality f(pi < 0 by using
Lemma 5 and pre- and post-multiplying both sides of the
inequality by T,,, = blockdiag(P,}, P;;*) and let X,,, =
Pyt Xy, =Pt Y, =WP,! and Y,, = K;P.", the
following obtain:

& Z¢i11 Z‘/’ilz

83
T‘Piz ( )

T,

0 = 29 =

Pi

Ne|

*

Qi 22
where

2y, =X (Ao + BoKo)" + (Ao + BoKo)X,, +
YLBl + BiY,, + (ap! + vt YL Bl BiY,, +
(ap; + By + Vo ) MM! + w, 1, + wyl07 X, X, +

XpGp Xy + YEG,Y,

QTP i Ui~ @i

L, = (Ai— Ay = BoK) Xy, + BiYy, + Yy, B +
Y(lJTiGuinz

Loy, = XAl + AXy, + YIB] + BiY,, + (a! +

ﬁq;il)XxiAiTAiXXi + (ﬁx_Ll + y&il)YxTiEiTEini +
(ax; + Br; + Ve ) MiM] + 03 02X, Xy, + w1, +
VEGu Yy,
By employing Lemma 6, we can obtain (69) and this
completes the proof.

Theorem 5: Suppose Assumption 1-4 are met and we
determine K, and E, from Step 1 and F; and T; from
Step 2 and K; and W; from Theorem 5. For ith follower’s
system (6) if there exit mtrices P,, = P£0 >0,P, =
P, >0 and P,,=P] >0 and a matrix ¥, and
positive constants @, ., By, VY, @y, Ey;» €n;» Ag,» By,
Yoir Epi» ®p;r Ay Bx;» Vx;» Ex; and @y, satisfying the
following condition:

II,. =
L ] (84)
Hnill Hnilz Hni13 30771'1 0 O
* Hnizz Hni23 0 Wniz
* * Hni33 0 0 pr/ig <
* * * q’"il 0 0
* * * * %niz 0
| * * * * * Cl‘Tli3_
0
where
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— AT T
M, = ATRy, + P A+ CTY + Y, G+ (ay, +
&g + &) Wi + KD)TB] B,(W; + K,) + w, 671, +

Gy, + (W + KT Gy (W, + K

I, = —(W; + K)"BI'R,, — (W, + K)TG,, W,
I, . =-W + K)"B P, — (Wi + KD" G, K
My, = (Ao + BoKo + BIW) Py, + Py (Ag +

BoKo + BiW) + (ay, + vy, + €9, )W BT BW, +
Wy, 07 L, + WG, W,

I, = Py (A; + BiK; — Ay — BoKo) + W B Py, +
VViTGuiKi

.= (4; + BK)"P,, + P, (A; + BiK;) +

(ctx, + By + By ) AT Ai + (B, + ¥, +

Vo )KI Bl BiK; + wy, 021, + &, CT C; + K[ G, K,
Py = [BMi By M By My By M; YpNio By

Z’nizz[P%Mi PfPiMi P¢iMi P‘PiMi P‘Pi]
ZjniS = [PxiMi PxiMi PxiMi le-Mi Pxi]

4771'1 =
—blockdiag(amln, Bnilns Voilns €510 €910, a)mln)

ni-n’

Dy, = —blockdiag(aq,iln, Boiln Yo Ins €p,In, a)wln)

Dy = —blockdiag(axiln, B;lns Vi Ins €x;Ins wxiln)

Then, under control input (12) and observer (10) with
E; = Pn_ilYm’ ith follower’s system and consensus error
and observer error are asymptotically stable with
guaranteed cost upper bound Jx, = n{(0)B,n;(0) +
@{ (0)P,,9;(0) + x{ (0)P,,x;(0) for cost function J,, =
Lim |19 (jn, (6 + ji (O + @) |
Proof: According to ith observer error definition
n; (t) = x;(t) — %;(t) we can get:

Do (t) = (A; + EiC; — ABy(K; +

W))n; () + (AA; + AB;K; + E;AC)x;(t) +

AB;W,;,(t) + fi(xi (t)) - fi(fi (t))
Consider the following Lyapunov candidate function:

+ X7 ()P ()

where B, P,, and P, are unknown symmetric positive-
definite matrices.
Taking the a-order derivative and using Lemma 3 yields:

DV, (6) < ((A; + EiC; — AB,(K; + 87)
Vl/i))ni(t) + (44; + AB;K; + E;AC)x;(t) +
ABiWi%(tT) + fi(xi(t)) -

fi(£©)) Byni() + 07 (OB, ((4; + EC —
AB;(K; + W))n;(t) + (4A; + ABK; +

E;AC)x;(t) + AB;W,;;(2) + fi(xi(t)) -

fi(£:©)) + ((4o + BoKy + (B; +

AB)W))@;(t) + (4; + B;K; + AA; + ABK; —

Ay — BoKy)x;(t) — (B; + AB)(K; +

Wn;(t) + fi(xi(t)) - fo(fi(t)) -

Foi(®) Ppgi(t) + 9T (OB, (4 +

(85)
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BoKy + (B; + AB)W)e;(t) + (A; + BiK; +
AA; + AB,K; — Ay — BoKy)x;(t) — (B; +
AB;)(K; + Wm,(t) + fi(xi(t)) - fo(fi(t)) -
Fvy(t) ) + ((A; + 04, + (B, +
AB)K)x;(t) — (B; + AB)K;n;(¢) + (B; +
ABi)VVi((piT(t) - Th’(t)) +
fi(xi(t))) P.x;(t) + x] ()P, ((Ai + AA; +
(B; + AB)K;)x;(t) — (B; + AB)Kn;(t) +
(B + ABYW; (0, () = mi(®)) + fi(x:(D)))
By using Lemma 4 yields:

n:(t) ! n:(t) (88)
Da¥ () < [9:(O]| Iy, [0:®

x; (t) x; (t)

where
Znill Zﬂilz Z’h‘13
= * P P
2y = Miz2 Niz3
* *

Niz3
Znigy = (Ai + ECYT Py, + By (Ai + EiC) + (ay +

€p; T &) Wi + K)TBI B,(W; + K) + (apt + Byt +
Yol + €;.1)P, M;MI' B, + ;1P E;N;NTET B, +

i i i
Wy, 07 In + wp By, By,

Zni, = -(W; + K))"B]'P,,

Znis = -(W; + K)"B[P,,

Ly, = (Ao + BoKy + B;W,)'P,, + P,,(Ay + BoK, +
BW) + (ag, + Ve, + € )W BIBW, + (a5} +

ﬁq;il + yf/;il + ‘Sf;il)PwiMiMiTP% + w‘;ilpfﬂipfﬂi +
wy,07 1,

Zyiys = Poi(Ai + BiK; — Ay — BoKo) + W B] By,

2,“33 = (A; + BiK)"P,, + P,,(A; + B;K;) +

(et + By + By ) AT A + (B + 7, +

Vo) KT BIBiK; + (azt + Bt + vt +

e )P, M;MI P, + w071, + wi Py Py, + €, CTC;
According to the fractional Lyapunov direct method, ith
follower’s observer error is asymptotically stable If 2, <
0.
Furthermore, we consider the following cost function:

J = lim [1“ (J'm(t) +Jip, (8) +jui(t))] (89)
Jni@®) =1 (OGyn; () (90)
Joi () = @] ()G, ;(t) 1)
Jur(®) = ] (G :(®) = (Ki(xi(0) (92)

1) + Wil (®) = mi®)) G (Kilm () -
n:(0)) + Wi(@i(t) = m:(0)))
I DXV, () + jy, (6) + i, () F ju () < O

Then for t € [0, ), the @-order integrating both sides
yields:
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Figure 2: The directed interaction topology graph of the MAS.

1% (i (0 + iy (8) +ju, () < %, (0) = (8) (94
Since DV, (t) <0, tlim V,,(£) = 0, therefore:

J=mqﬂww+mw+mmﬂ< (95)
,,(0) = 17 (0)P,1,(0) + ¢ (0P, 0, (0) +
X! ()P, x,(0) = I,
So, the upper bound Jx; of the quadratic guaranteed cost
function can be obtained.
DUy, (8) + iy, () + Jp, () + g (O) < ©6)
n®]  [m®
oD 2, |o:®
x;(t) x;(t)

where
2’7&1 2’7112 f'“13
frli = * Z”tzz Z”iza
* * Z”i33

= (A; + E,C)TP, + B, (A; + EiC) + (ay, +
+£x)(W +K)'BIB,(W; + K) + (at + Bt +
yn Y+ e, )P, MM P, + &, Py E;N;NTET P, +
wy, 071, + w; P By, + Gy, + (m + KL)TGui(Wl +
K:)

fm'lz = —(W; + K)"B{ P,, — (W; + K))" G, W,
iy = (Wi + K)"B{ P, — (W; + K)" G, K;
2,,12 = (A + BoKy + BW)"P,, + P, (A + BoK, +

BW) + (ay, + ¥x, + €, )WTBTB W; + (a,! +
Bol + Vo + s—l)P M;M!'P,, + w,!P,.P, +
W, 07 In t Gy, + WlTGuiWL

Zni23 = P(Pi(Ai + BiKi - AO - BOKO) + VViTBiTPXi +
VViTGuiKi
2,“33 = (4; + BiK)"P,, + P, (A; + BK;) +

(at; + By + Bo ) AT A + (B + ¥, +
Vo) KEBIBiK; + (azt + Bt + vt +
er )P, MiM! P, + 0,071, + 0y P, Py, + €, CTC; +
K/ G,.K;
By employing Lemma 6 and let Y, = P, E;, we can
obtain (84) and this completes the proof.

4. Simulation results
In this section, an example is presented to verify the
applicability and effectiveness of the scheme proposed.
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Consider a MAS with one leader and 6 followers, the
directed interaction topology graph is depicted in Figure
2. The directed interaction topology graph contains a
directed spanning tree with the leader rooted which can be
seen obviously from Figure 2.
Hence, the matrix H is given as:

2 0 0 -1 o0 o0

0 2 -1 0 0 ©0

0 -1

0 -1 0 2 -1 0

0 0 -1 0 1 0

0 0 0 -1 o0 1
Consider a =09, n=2, m;=o0;, =1;Vi € NU {0}
and the parameters of MAS are as follows:

0 1 0
$=L%® ﬂMJ,&=h®]q=
o o=

M; = 0.011,, N; = 0.01, H;(t) = cos(t) I,, 4; = 4,
Ei = Bi’ C~i = Ci' 9,: = O-i =01
where a, = {5,0,0,1,1,2,2} , a, = {5,6,5,5,6,6,5}, b =

{1,1,23321} , c¢={1221311} for i€
710 16

{0,1,2,34546} . x,(0) _1£_10 , xl(o;_[_m] ,

1(0) = [ 1], %@ = ] %@ = 7], %(0) =

9 _ _ —
7] and %@ =[1}] - G, =005, G, =011,
Gy, = I, G,, = 0.11;, G, = 0.1, Q = 0.11; p = 0.25.
From the aforementioned theorems, by using the LMI

toolbox in MATLAB, gain matrices can be obtained as
the following.

5 [e1(§>], K= [k kO], W, =

ez ()
- - _[A® O _
[WI(L) WZ(l)]’ Fl - f3(l) ﬁl,(l):l ) Ti -
t1()) (D)
[tz(i) t3(1)

where

e; = {—53.3,36.2,22.3,43.9,28.2,32.7,51.7} e, =
{59.5,—19.4,—-12.8,—27.7,—24.6,—27 4, 586} s
ky, =

{-1.21,-1.32,-0.87,—0.23,—0.23,—0.18, —0.12}
k, = {4.3,—1.47,-0.92,—0.22,—0.22, —0.07,0.05} for
i €{0,1,2,3,4,5,6} and w, =
{—16.93,-12.83,-7.7,—-10.99, —14.74,—9.5} , w,
{—13.73,—-11.24,-6.66,—7.71,-9.8,-8.79} , f,
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{-0.38,—-0.38,—-0.49,—0.49,—-0.51, —-0.51}
{-0.03,—-0.03,—0.04, —0.04, —0.04, —0.04}
{-0.05,-0.05,-0.07,-0.07,—0.07, —0.07}
{-0.07,-0.07,—-0.08,—0.08, —0.08, —0.08}

{10.88,10.88,13.73,13.73,10.74,10.74}
{0.98,0.98,1.24,1.24,0.93,0.93}

>

>

>

>

>

>

f
f3
fa
ty
t;
t3

{0.48,0.48,0.61,0.61,0.38,0.38} for i € {1,2,3,4,5,6}.

1

The pseudo-state trajectory x;(t), the consensus error
trajectory &;(t), the observer error trajectory n;(t) and
the control inputs trajectory u;(t) of the MAS are shown
in Figure 3, Figure 4, Figure 5 and Figure 6, respectively.
The event-triggered consensus control protocol v;(t) and
the internal execution interval of followers is shown in
Figure 7 and Figure 8.

agent0
agent 1
agent2
agent3
agent4
agent5
agent 6

5t

|

3

4

5 6 7 8

t(s)

Figure 3: The pseudo-state trajectory x;(t) of the MAS.

agent1
agent2
agent3
agent4
agent5
agent 6

|

| | | |

3

4
i(s)

5 6 7 8

Figure 4: The consensus error trajectory §;(t) of the MAS.
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15|—

— agent 0
———agent 1

agent 2
— agent 3
agent4
agent5
— agent 6

n(t)

A5 | | | | | | | |
0 1 2 3 4 5 6 7

t(s)
Figure 5: The observer error trajectory 1;(t) of the MAS.

agent0
agent 1
agent2
100 - —agent 3
agent4
agent5
— agent 6

t(s)

Figure 6: The control inputs trajectory u;(t) of the MAS.
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30

agent 1
agent 2
agent 3
agent4
agent5
—agent 6
=
50 | | | | | | |
0 1 2 3 5 6 7 8
t(s)
Figure 7: the event-triggered consensus control protocol v;(t) of the MAS.
7
X agent1
agent 2
X agent3
6 XXX X X X XXXXX XX X X X X X XXX XXXXX X x x x X agent4
agent 5
X agent6
5
4¥—X X X X XX XX x AKX OO HNOMOOOIOONKK XK K X X X XK X XX XXXXXX XX X X X x x x x x x x x x x
5]
)
2
=
FRXXXXX X X X X X XX X00KXXX X X XX X XXXXXXXXXXXXX X X X X X X x x X x x
ok
PTHRHX X X X X X X X X X XX XXXXOOOOOOOKKXXXXX XX X X X X XXX XXX X XXXX X X x x x x x x x
0 | | | | | | | | |
0 0.5 1 1.5 2 3 3.5 4 4.5 5

Figure 8: Internal execution interval of followers.

According to the figures, it can be seen that observers
estimate pseudo-states of agents correctly and the leader-
following consensus has been achieved properly while the
communication between the followers is based on event-
triggered strategy. Updates to the control protocol occur
only upon the satisfaction of the triggering condition but
the control inputs of agents change continuously.

5. Conclusion

In this paper, the event-triggered leader-following GCC
for heterogeneous uncertain nonlinear FOMASs based on
observers has been studied. It considered that each agent
has different fractional-order dynamics with state, input,
and output uncertainty. For saving communication
resources, an event-triggered strategy proposed that

IJRTEL, 2024, Vol.3, No. 1, pp. 260-274

control protocol doesn’t update until triggering condition
maintain. Based on the fractional Lyapunov direct method
and the proposed event-triggered strategy, problem
described by LMIs and some criteria were obtained to
ensure that GCC was achieve. To show the effectiveness
of the proposed method a numerical simulation is given
and the results are reported. Future works will focus on
the fixed-time consensus leader-following consensus for
heterogeneous uncertain nonlinear FOMASs based on
observers.
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