Investigation of viruses infecting Lycopersicum esculentum in Iran and Molecular Analysis of Cucumber Mosaic Virus | ||
Plant, Algae, and Environment | ||
دوره 8، شماره 1، 2024، صفحه 1298-1310 اصل مقاله (467.98 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.48308/jpr.2024.234970.1069 | ||
نویسندگان | ||
Mehdi Safaeizadeh* 1؛ Abbas Saidi2 | ||
1Department of Cellular and Molecular Biology Faculty of Life Sciences and Biotechnology Shahid Beheshti University Postal Code: 1983969411 | ||
2Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran | ||
چکیده | ||
Viral diseases cause significant economic losses in tomatoes worldwide. This detect conducted a comprehensive survey in tomato (Lycopersicum esculentum L.) fields in Hamedan and Tehran provinces in Iran to detect and determine the incidence of tomato-infecting viruses. Using specific antibodies, collected symptomatic samples (348) were analyzed by Double antibody sandwich (DAS)-ELISA. According to the DAS-ELISA experiment, we found that 26.14% of collected samples were infected Arabis mosaic virus (ArMV), 36.78 % with Cucumber mosaic virus (CMV), 10.63% with potato virus Y (PVY) 3.44 % with Tomato bushy stunt virus (TBSV), 7.18 % with Tomato spotted wilt virus (TSWV), and 2.87% with Tomato yellow leaf curl virus (TYLCV). Furthermore, double and triple infections were also observed in 15.08 and 6.03% of samples, respectively. As the CMV was the most prevalent among other tested viruses. Moreover, our findings showed that CMV was present in multiple infections of different samples. Serological diagnoses were confirmed by reverse transcription-polymerase chain reaction tests (RT-PCR) using a pair of primers that are specific for the detection of CMV and resulted in a DNA fragment of the expected size (540 bp). These results confirmed the DAS-ELISA experiment. Furthermore, in this study, we introduced a rapid method that facilitates the diagnosis of CMV in infected samples. Our findings can be used for control strategies and rapid diagnosis of viral infection in plants. Moreover, the outcome of this research can be used for the preparation of resistant cultivars against important viruses in tomatoes. | ||
کلیدواژهها | ||
CMV؛ DAS-ELISA؛ RT-PCR؛ Tomato؛ Viral diseases | ||
مراجع | ||
Abadkhah M, Koolivand D, Eini O. (2018). A New Distinct Clade for Iranian Tomato Spotted Wilt Virus Isolates Based on the Polymerase, Nucleocapsid, and Nonstructural Genes. Plant Pathology Journal. 34(6):514-531. Doi: 10.5423/PPJ.OA.04.2018.0062.
Abou Kubaa R, Choueiri E, Heinoun K, Cillo F, Saponari M. (2022). First report of tomato brown rugose fruit virus infecting sweet pepper in Syria and Lebanon. Journal of Plant Pathology. 104: 425. Doi: https://doi.org/10.1007/s42161-021-00987-y
Aghamohammadi V, F Rakhshandehroo M, Shams-bakhsh and Palukaitis P. (2013). Distribution and genetic diversity of tomato mosaic virus isolates in Iran. Journal of Plant Pathology. 95 (2): 339–47. Doi: http://www.jstor.org/stable/23721524.
Alipour F, Massumi H, Heydarnejad J, Hosseinipour A, Maddahian M. (2021) Molecular characterization of Iranian isolates of Alfalfa mosaic virus based on movement protein gene. Agricultural Biotechnology Journal 13 (4), 81-100. Doi: 10.22103/JAB.2021.17934.1328.
Anastassiadou M, Arena M, Auteri D, Brancato A, Bura L, Carrasco Cabrera L, Chaideftou E, Chiusolo A, Crivellente F, De Lentdecker C, Egsmose M, Fait G, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Magrans O, Mangas I, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Santos M, Sharp R, Szentes C, Terron A, Tiramani M, Vagenende B, Villamar-Bouza L. (2021). Peer review of the pesticide risk assessment of the active substances Pepino Mosaic Virus,EU strain, mild isolate Abp1 and Pepino Mosaic Virus,CH2 strain, mild isolate Abp2. European Food Safety Authority (EFSA); J. 12; 19 (1): e06388. Doi: https://doi.org/10.2903%2Fj.efsa.2021.6388
Arinaitwe W, Guyon A, Tungadi TD, Cunniffe NJ, Rhee SJ, Khalaf A, Mhlanga NM, Pate AE, Murphy AM, Carr JP. (2022). The Effects of Cucumber Mosaic Virus and Its 2a and 2b Proteins on Interactions of Tomato Plants with the Aphid Vectors Myzus persicae and Macrosiphum euphorbiae. Viruses. 1;14(8):1703. Doi: 10.3390/v14081703.
Atarashi H, Jayasinghe WH, Kwon J, Kim H, Taninaka Y, Igarashi M, Ito K, Yamada T, Masuta C, Nakahara KS. (2020). Artificially Edited Alleles of the Eukaryotic Translation Initiation Factor 4E1 Gene Differentially Reduce Susceptibility to Cucumber Mosaic Virus and Potato Virus Y in Tomato. Front Microbiology. 11: 564310. Doi: 10.3389/fmicb.2020.564310.
Babaie G and Izadpanah K. (2003). Vector Transmission of Eggplant Mottled Dwarf Virus in Iran. Journal of Phytopathology. 151 (11-12): 679-682. Doi: https://doi.org/10.1046/j.1439-0434.2003.00788.x
Belval L, Marmonier A, Schmitt-Keichinger C, Gersch S, Andret-Link P, Komar V, Vigne E, Lemaire O, Ritzenthaler C, Demangeat G. (2019). From a movement-deficient Grapevine fanleaf virus to the identification of a new viral determinant of nematode transmission. Viruses. 11 (12): 1146. Doi: 10.3390/v11121146.
Cai L, Mei Y, Ye R, Deng Y, Zhang X, Hu Z, Zhou X, Zhang M, Yang J. (2023). Tomato leaf curl New Delhi virus: an emerging plant begomovirus threatening cucurbit production. Abiotech. 25; 4 (3): 257-266. Doi: 10.1007/s42994-023-00118-4.
Cao X, Huang M, Wang S, Li T, Huang Y. (2024). Tomato yellow leaf curl virus: Characteristics, influence, and regulation mechanism. Plant Physiology and Biochemistry. 213:108812. Doi: 10.1016/j.plaphy.2024.108812.
Cho IS, Chung BN, Yoon JY, Hammond J, Lim HS. (2022). First report of Pepino mosaic virus infecting tomatoes in South Korea. Plant Diseases. Doi: 10.1094/PDIS-02-22-0380-PDN.
Choi H, Jo Y, Cho WK, Yu J, Tran PT, Salaipeth L, Kwak HR, Choi HS, Kim KH. (2020). Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics. International Journal of Molecular Sciences. 13; 21 (20): 7565. Doi: 10.3390/ijms21207565.
Clark MF and Adams AN (1977): Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology. 34: 475–483. Doi: http://dx.doi.org/10.1099/0022-1317-34-3-475.
Danesh D, Bahar M, Ahoonmanesh A, Ghobadi C. (1989). Some new hosts of potato chlorotic stunt virus in Isfahan. Page 168. In: Proceedings 9th Plant Protection Congress, Mashhad, Iran.
F.A.O. (2021). F.A.O. Statistical Databases: Agricultural data. http://faostat.fao.org.
Farzadfar Sh, Pourrahim R, Shahriari D, Golnaraghi A, Izadpanah K (2000). Occurrence of Tomato bushy stunt virus (TBSV) in tomato fields of Varamin area. Proceeding of the second Iranian Horticultural Sciences Congress. Sept. 19-21, Karaj, Iran, p16-18.
Fidan H, Sarikaya P, Calis O. (2018). First report of Tomato brown rugose fruit virus on tomato in Turkey. New Disease Reports. 39 (1): 18. Doi: https://doi.org/10.5197/j.2044-0588.2019.039.018
García-Estrada RS, Diaz-Lara A, Aguilar-Molina VH, Tovar-Pedraza JM. (2022). Viruses of Economic Impact on Tomato Crops in Mexico: From Diagnosis to Management-A Review. Viruses. 14 (6): 1251. Doi: 10.3390/v14061251.
Ghorbani A, Rostami M, Seifi S, Izadpanah K. (2021). First report of Tomato brown rugose fruit virus in greenhouse tomato in Iran. New Disease Reports. 44: e12040. Doi: https://doi.org/10.1002/ndr2.12040.
Ghorbani S. (1993). Identification of tomato vein yellowing virus (TVYV) in Tehran province. Page 158. In: Proceedings 11th Plant Protection Congress, Rashat, Iran.
Green MR, and Sambrook S. (2014). Molecular cloning: A laboratory manual, 4nd edition, Cold Spring Harbor Laboratory Press; 978-1-936113-42-2; New York, USA.
Hanson SF. (2022). Viral diseases of tomato origins, impact, and future prospects with a focus on tomato spotted wilt virus and tomato yellow leaf curl virus. Tomato - from cultivation to processing technology. IntechOpen. 1-17. Doi: 10.5772/intechopen.108608.
He WQ, Wu JY, Ren YY, Zhou XP, Zhang SB, Qian YJ, Li FF, Wu JX. (2020). Highly sensitive serological approaches for Pepino mosaic virus detection. Journal of Zhejian University Science B. 21 (10): 811-822. Doi: 10.1631/jzus.B2000255.
Heydarnejad J, Mozaffari A, Massumi Fazeli HR, Alistair J, Gray A, Meredith S, Lakay F, Shepherd DN, Martin DP, Varsani A (2009). Complete sequences of tomato leaf curl Palampur virus isolates infecting cucurbits in Iran. Archives of Virology. 154:1015–1018. Doi: https://doi.org/10.1007/s00705-009-0389-6.
Massumi H, Shaabanian M, Hosseini Pour A, Heydarnejad J, Rahimian H. (2009). Incidence of viruses infecting tomato and their natural hosts in the southeast and central regions of Iran. Plant Disease. 93 (1): 67-72. Doi: https://doi.org/10.1094/pdis-93-1-0067.
Naganur P, Shankarappa KS, Mesta RK, Rao CD, Venkataravanappa V, Maruthi MN, Reddy LRCN. (2023). Detecting Tomato leaf curl New Delhi virus causing ridge gourd yellow mosaic disease, and other Begomoviruses by antibody-based methods. Plants. 12 (3): 490. Doi: 10.3390/plants12030490.
Nayaka SN, Singh OW, Kumar P, Roy A, Mandal B. Geographical distribution of tomato-infecting begomoviruses in major cucurbits in India: a diagnostic analysis using begomovirus species specific PCR. Virus Disease. 34 (3): 421-430. Doi: 10.1007/s13337-023-00837-8.
Osundare OT, Fajinmi AA, Adelu AR. (2023). Effects of natural virus infection on field-grown eight tomato genotypes (Lycopersicon esculentum). Jordan Journal of Agricultural Sciences. 19 (3): 213-222. Doi: https://doi.org/10.35516/jjas.v19i3.203.
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. (2021). Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Frontiers in Microbiology. 12: 671925. Doi: 10.3389/fmicb.2021.671925.
Safaeizadeh M and Ghotbi Ravandi AA. (2023). Evaluation of the hormonal changes in the model plant Arabidopsis thaliana as the consequence of Pseudomonas aeruginosa infection. Plant, Algae and Environment. 7 (2): 1213-1227. Doi: 10.48308/jpr.2024.235141.1070.
Safaeizadeh M, and Saidi A. (2012). First report of Cucumber mosaic virus on Ibicella lutea in Iran. Journal of Plant Pathology. 94 (4): pS4.95. Doi: http://www.jstor.org/stable/45156331.
Safaeizadeh M, Saidi A, Palukaitis P. (2015). Molecular characterization of Cucumber mosaic virus (CMV) isolates infecting tomatoes in Hamedan and Tehran provinces of Iran. Acta Virologica. 59: 174-178. Doi: https://doi.org/10.4149/av_2015_02_174
Safaeizadeh M. (2022). First report of cucumber mosaic virus infecting Dianthus hybridus in Iran. Journal of Plant Pathology. 104 (1): 397-397. Doi: https://doi.org/10.1007/s42161-021-00958-3.
Saidi A and Safaeizadeh M. (2012). First report of Cucumber mosaic virus on Canna indica in Iran. Australasian Plant Disease Notes. 7: 119–121. Doi: https://doi.org/10.1007/s13314-012-0062-x
Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. (2022). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology. 12 (9): 938-54. Doi: 10.1111/j.1364-3703.2011.00752.x.
Shirazi M, Mozafari J, Rakhshandehroo F, Shams-Bakhsh M. (2014). Genetic diversity, host range, and distribution of tomato yellow leaf curl virus in Iran. Acta Virology. 58 (2):128-36. Doi: 10.4149/av_2014_02_128.
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. (2022). Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. Molecular Plant Pathology. 23 (9): 1262-1277. Doi: 10.1111/mpp.13229. | ||
آمار تعداد مشاهده مقاله: 71 تعداد دریافت فایل اصل مقاله: 136 |