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This paper presents a Peer-to-Peer (P2P) energy trading model in micro-grids that 
considers distributed solar photovoltaic systems (SPVs) and battery energy storage 
systems (BESS) by the TLBO Algorithm. It aims to minimize customer costs and 
increase profit by optimizing charging, purchasing, and selling decisions. For this 
purpose, two scenarios are studied. In the first scenario, the primary energy system 
includes SPVs, loads, and BESS to optimize the charge/discharge of the energy 
storage systems. In the second scenario, it is assumed that in addition to the SPVs, 
loads, and BESS, a neighbouring fossil fuel-fired micro-grid is connected to the 
primary energy systems, allowing peer-to-peer (P2P) energy trading with it. 
According to the results, trading in the second scenarios on a winter day lead to 
14.53 $ per day, compared to the first scenario with 11.53 $. In addition, the 
neighbouring fossil fuel-fired micro-grid in the second scenario, which has created 
the possibility of energy exchange between micro-grids, has led to an increase of 
about 21% in the profit of the primary power grid. Based on the results, this 
approach seemed to be helpful for micro-grid operators to make the most 
economical decisions. 
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1. Introduction 

Renewable-based energy sources, like solar 
photovoltaic systems, fuel cells (FCs), and geothermal 
power plants, constitute the majority of the emerging 
power grid industry segment [1-3]. This represents a shift 
from centralized power plants to more localized, 
distributed power generation, particularly in urban, 
industrial, and community areas [4-8]. Therefore, it is 
essential to integrate two or more sources to provide 
continuous power and minimize the cost to the customer 
via an intelligent energy management system (EMS) [8-
10]. Nowadays, economic perspectives are an essential 
issue in the evolution of the energy grid. They have 
always been the main priority in planning energy 
systems. Due to energy source technology and pattern 
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evolution, energy markets are decentralized and moving 
forward to a digital market. Peer-to-peer (P2P) energy 
trading is entering the energy sector for distributed 
generation (DG) [11]. P2P application lets individual 
consumers become consumers and makes it possible to 
share their excess energy with neighbors [12-15]. On the 
other hand, instead of grid operators, the microgrid 
operators are maintaining energy balance in each vicinity 
and managing electric consumption. They supervise the 
capacity of the controllable line for the exchange of 
energy [16, 17]. In P2P energy exchange, additional 
intermediaries’ costs can be considered easily by 
distribution costs in addition to the microgrid electricity 
prices [11]. 

The results of a P2P energy trading platform 
simulation have been presented that this platform can 
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help network and congestion management and lead to 
more DG sharing within a community [18, 19]. The win-
win situation can achieved by looking for a reasonable 
exchange price and making a deal in the moment. Energy 
market players are not limited to conventional power 
plants and loads in the P2P energy trading ecosystem and 
each customer could trade electricity at a marginal price 
by the time of use (TOU) price and higher than feed-in 
tariffs (FIT). This provides motivating profit for sellers 
and savings for buyers [20]. Recent studies found that a 
30% lower energy cost for households is reachable in the 
P2P energy trading model compared to traditional energy 
exchange methods[13]. The reference [21] presents a 
multi-objective model that uses a future-day stochastic 
scheduling model to lower costs for ten renewable-based 
microgrids, which include solar photovoltaic and wind 
turbines (WT) with demand response and energy storage. 
In the Reference [22], all microgrids are equipped with 
100% renewable energy sources, including solar 
photovoltaic systems (SPVs) and wind turbines (WTs), 
thereby reducing pollution. In addition to reducing 
interruptions caused by renewable energy, energy storage 
is an integral part of a dynamic energy balance. 
Microgrids have been modeled using autoregressive 
integrated moving averages and fast-forward selection 
methods to generate and minimize scenarios based on 
fluctuations in day-ahead market prices. Energy 
transmission has also been considered stable and reliable 
as a technique for managing and coordinating energy 
sharing between microgrids and energy grids in local 
environments. The effectiveness of the proposed model 
is verified using a case study of 24 modified IEEE buses. 
Interactive energy presents optimal scheduling for profit 
maximization among Home Microgrids (H-MGs) 
described in [23] presents an intelligent energy 
framework in which home microgrids (H-MGs) can 
cooperate in a multi-H-MG system by forming coalitions 
to gain market competition. In addition, considering 
demand fluctuations, renewable energy generation in 
multiple H-MG can be achieved with demand-side 
management strategies that try to use mechanisms to 
produce a smoother demand curve. Based on a recent 
study, interactions between multi-carrier energy systems 
provide the opportunity to achieve affordable and clean 
energy by using energy resources more efficiently. For 
example, [24], a transactional energy (TE) framework is 
proposed for optimal energy management of multiple 
energy hubs. Each hub is a multi-carrier energy system 
that performs daily energy management to plan its 
electrical, heating, and cooling demand profiles and 
manages its internal energy resources to reduce total 
energy costs and CO2 emission levels. By reviewing the 
state-of-the-art literature, it can be said that the optimal 
and economic planning of the energy system based on 
bilateral energy exchange, focusing on the planning of 
BESS and considering SPVs, has not been studied well. 
This paper examines the exchange of electricity between 
microgrids connected to and against the grid. It takes 
electricity tariff changes during the day into account, 
which optimizes resource scheduling.  

With the rapid growth of optimization problems, 
efficient optimization methods are presented. Early 
works focused on mathematical techniques which faces 

difficulties in the newly-emerged big-sized problems. 
This leads researchers to develop different meta-heuristic 
algorithms, such as swarm intelligence algorithms 
(SIAs), evolutionary algorithms (EAs), and algorithms 
based on biological phenomena[18-25]. 

However, some specific control parameters are 
defined in algorithms that must be set by the user in such 
algorithms These specific parameters of the algorithm 
require reasonable and appropriate tuning and are 
essential for these algorithms. Therefore, in various 
scientific research, efforts should be made to overcome 
this issue. One of these methods is the optimization 
algorithm based on training and learning (TLBO), which 
can be used without any adjustment parameters. 

In Section 2, after the definition of topology, the 
proposed method has been described in detail. Section 3 
describes the optimization method, and Section 4 
illustrates the analysis and discussion of the results. The 
paper concludes with Section 5. 

2. Proposed Method 

2.1. Energy trading model for microgrids based on 
peer-to-peer exchanges 

As shown in Fig. 1, a microgrid with renewable 
energy sources can exchange energy with the main grid 
and other microgrids. This energy exchange between 
microgrids is limited by technical and economic issues. 
The presence of BESS can improve the conditions for 
energy exchange between different areas[10-12]. 
Consequently, microgrid operators can increase their 
profitability. This structure is illustrated in Fig. 2, where 
the local electric load is placed near a renewable energy 
source and BESS in the left micro-grid and the right side 
micro-grid can be indirectly supplied by the main grid, 
BESS, or adjacent energy systems. 

 
Fig. 1. Example of energy exchange in connected 

microgrids without direct main grid intervention [12]. 
Energy exchange between these parts depends on the 

energy tariff. Based on this micro-network tariff, it can 
decide to sell, buy, or store energy in different situations. 
In such a structure, maximizing profit is the main goal of 
the energy management system for this micro-grid by 
providing the required energy from the available 
resources at the lowest cost. Due to the presence of 
storage, the operation planning should be done beyond 
24 hours in order to effectively utilize all installed 
equipment. 
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Fig. 2.  Energy storage presence in a microgrid[12] 
 

2.2. Constraints and problem definition 
 
In this paper, the first microgrid includes solar cells, 

energy storage, and co-generation of electricity and heat 
(CHP) units. Each part has been modeled based on [25]. 
The operational constraints and limitations must be 
considered in accordance with economic factors in the 
optimization problem to achieve the optimal operational 
strategy. Therefore, the fitness function should include 
costs and revenues.  

The constraints and limitations that must be 
considered in the optimization problem in order to 
achieve the optimal efficiency of energy systems are in 
the form of relations (1) - (5) 

  
)1( 𝐸!,#$% < 𝐸!(𝑡) < 𝐸!,#&'        ∀𝑡 

)2( 𝐸(𝑡 + 1) = 𝐸(𝑡) + 𝑃((𝑡). 𝛥𝑡. 𝜂(!
− 𝑃)(𝑡). 𝛥𝑡. 1/𝜂)!  

)3( 0 < 𝑃((𝑡) < 𝑃(,#&' 

)4( 0 < 𝑃)(𝑡) < 𝑃),#&' 

)5( 𝑃((𝑡). 𝑃)(𝑡) = 0          ∀𝑡 

The hourly state of charge (SOC) is defined by 𝐸!(𝑡). 
The SOC value should be limited according to (1) and 
updated according to (2) in each time interval. In (2), the 
values of 𝜂(!   and 𝜂)!  express the charging and 
discharging efficiency of the battery respectively, and  
limited between 0 and 1. This stipulation means that part 
of the power can be stored or restored from the battery 
storage system. The efficiency of charging and 
discharging also shows the amount of energy wasted 
during charging and discharging cycle. In addition, the 
storage capacity of the battery has a maximum and a 
minimum, which is mentioned in (1). 

The charging and discharging power of the battery is 
expressed by 𝑃((𝑡)  and 𝑃)(𝑡)  respectively, while their 
upper and lower limits should be maintained between 
pre-defined values by (3) and (4) [25].The maximum 
charging and discharging power of the battery is 
expressed by 𝑃(,#&'  and 𝑃),#&'  respectively. It is 
assumed that the battery can only be charged or 
discharged in each time interval. This rule expressed by 
(5). The initial amount of energy in the battery E(t =0) is 
equal to E0, and final value of E(t) should be equal with 
initial value of E0. 

The following relations define another constraints in 
controlling the amount of charging and discharging, 

which should be taken into account during 
implementation. 

)6( 𝑃!(𝑡) − 𝑃!(𝑡 − 1) ≤ 𝑃",$%& 

)7( 𝑃!(𝑡) − 𝑃!(𝑡 − 1) ≥ 𝑃!,$%&	

 
These relationships are expressed in equations (6) for 

the charging cycle and (7) for discharge, indicate the 
amount of power input and output to the battery during 
one hour follows a threshold limit. 

Variable efficiency and fixed efficiency of energy 
conversion of CHP, are defined by the following 
equations. 

	𝑃𝐸,𝑖
𝑐ℎ𝑝 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑎𝑖

𝑐ℎ𝑝𝜙𝑖
𝑐ℎ𝑝+𝑏𝑖

𝑐ℎ𝑝𝑇𝑠,𝑖
𝑐ℎ𝑝+𝑐𝑖

𝑐ℎ𝑝																				
𝑟1,𝑖𝜙𝑖

𝑐ℎ𝑝,max ≤𝜙𝑖
𝑐ℎ𝑝 ≤𝜙𝑖

𝑐ℎ𝑝,min

𝑎𝑖
𝑐ℎ𝑝𝜙𝑖

𝑐ℎ𝑝+𝑏𝑖
𝑐ℎ𝑝𝑇𝑠,𝑖

𝑐ℎ𝑝+𝑐𝑖
𝑐ℎ𝑝−𝑤1,𝑖											

𝑟2,𝑖𝜙𝑖
𝑐ℎ𝑝,max ≤𝜙𝑖

𝑐ℎ𝑝 ≤ 𝑟1,𝑖𝜙𝑖
𝑐ℎ𝑝,min

𝑎𝑖
𝑐ℎ𝑝𝜙𝑖

𝑐ℎ𝑝+𝑏𝑖
𝑐ℎ𝑝𝑇𝑠,𝑖

𝑐ℎ𝑝+𝑐𝑖
𝑐ℎ𝑝−𝑤1,𝑖−𝑤2,𝑖

𝜙𝑖
𝑐ℎ𝑝,max ≤𝜙𝑖

𝑐ℎ𝑝 ≤ 𝑟2,𝑖𝜙𝑖
𝑐ℎ𝑝,min

(8) 

𝑤7,$ = (𝑟7,$𝜙$
(89,:;< − 𝜙$

(89)𝜇7,$                             (9) 

𝑤=,$ = (𝑟=,$𝜙$
(89,:;< − 𝜙$

(89)𝜇=,$                           (10) 

𝑓$
(89 = (3412 40611⁄ ) × C

>!,#
$%&?@#

$%&

A#
$%& D                    (11) 

The (8) shows the variable efficiency performance of 
a CHP. In (9) and (10), μ1 and μ2 are positive coefficients 
that determine how much the production power is 
affected by efficiency variability. In addition, r1 and r2 
describe change in generated power. With known amount 
of thermal and electrical power produced by this 
equipment, it is possible to calculate the flow rate of the 
gas consumption based on equation (11) [26]. 

In equation (11), 𝜂$
(89  is the overall efficiency of 

CHP. To calculate the required gas in standard cubic 
meters (SCM), the output of equation (11) multiplied by 
the appropriate conversion factor. 

Another renewable source in this study is solar panel 
whose production rely on the amount of absorbed 
sunshine in the area. The output power of photovoltaic 
modules define by following equations [27]. 

)12( 𝑃9B = 𝑃CDE
𝐼F

1000
[1 + 𝛾(𝑇( − 25)] 

In (12), PSTC is the maximum power of the 
photovoltaic module under standard test conditions. The 
Is is the solar radiation on the surface of the photovoltaic 
module. In addition, γ is the temperature coefficient of 
the photovoltaic module and Tc is the temperature of the 
photovoltaic cell (module) which is obtained from this 
equation: 

)13( 𝑇( = 𝑇& +
𝐼F
800

(𝑇GHED − 20) 

In (13) where Ta  is the ambient temperature and 
TNOCT is the nominal cell temperature. 
2.3. Power balancing and Load Sharing 

The sample microgrid shown in Fig. 3, includes 
sources as input and load as output. Genrarally, load of 
the micro-grid could be a combination of electric and 
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thermal energy demand. There is also a battery that stores 
excess input energy and discharges it during peak hours. 
The input and output energy equations of the micro-grid 
can be expressed by (14) 

)14( 𝑃! = 𝑃"#$% − 𝑃&' ± 𝑃($))*+, 
In (14), PI is the injected or delivered power from the 

main grid, PPV is the power produced by the photovoltaic 
system, and finally, Pbattery is the battery power. 
Obviously, negative PG means selling power to the grid, 
and otherwise, it means energy buying. 

Since the optimization problem is solved for the 
microgrid, as a load distribution problem, it is possible to 
ensure that the equality condition in (14) is satisfied. 
Although conventional methods of load sharing such as 
forward and backward do not have any prohibition in 
solving this problem. However, due to the lack of line 
restrictions in micro-grids, the problem can be modeled 
and solved as a single node. 

 

 
Fig. 3. Components of a micro-network equipped 

with different parts[12] 

2.4. Energy exchange tariff 
In the economic study of distribution networks and 

micro-grids, for achieving economic advantages and  
network loading reduction during peak times, different 
tariffs are proposed for different hours of the day and 
night. Three different tariffs can be considered as on-
peak, mid-peak, and off-peak in studies of electric power 
trading [18]. 

In electric energy trading, when the network load is 
low, the price of energy will drop significantly. 
Increasing the electric load and getting closer to the peak 
time leads to an increase in the price. Microgrids tend to 
receive power from the grid during the low-load hours of 
the grid and sell their excess generated power to the grid 
during peak hours. This is more likely to happen in the 
presence of energy storage systems. Therefore, it should 
be noted that the planning effect of peer-to-peer energy 
exchange is considered with the presence of microgrids 
next to the upstream distribution network. 

3. Optimization Method  

The TLBO algorithm has two hase and will be 
explained in the next section. 
3.1. Teaching-Learning Based Optimization (TLBO) 

The TLBO algorithm is based on the philosophy of 
the teaching-learning process in the classroom. In this 
method, the teacher's impact on the learners' is 
simulated[28]. Like other swarm intelligence ones, this 
method is a crowd-based stochastic optimization 
algorithm. In contrast with many meta-heuristic 

algorithms, it does not require setting specific 
parameters. Due to some characteristics of the 
optimization algorithm based on training and learning, 
such as simplicity and no specific parameter settings, fast 
convergence, and easy implementation and at the same 
time efficiency, it has been widely used to solve many 
problems from different fields of science and technology. 
This algorithm has two phases, which are explained in 
detail. 
Teacher phase 

In this phase, students are trying to improve their 
knowledge and grades based on the level of information 
and knowledge of the teacher. This phase constitutes the 
first part of the algorithm, based on which a reference 
should be used to improve the fitness function. On the 
other hand, in this phase, the teacher tries to move the 
class average (Meank) to his knowledge level (Teacher) 
by his abilities. Therefore, this difference in the level of 
knowledge between the average class and the teacher can 
be shown in the form of (15). 

)15( 𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛' = 𝑇𝑒𝑎𝑐ℎ𝑒𝑟' − 𝑇𝐹' ×𝑀𝑒𝑎𝑛'	

In (15), TFk expresses the learning coefficient. Based 
on this parameter, the average movement towards the 
teacher can be controlled. It is necessary to explain that 
the numerical value of this parameter is possibly chosen 
as 1 or 2. To do this, the expression round(1+rand(.)) is 
used, which can produce the numbers 1 or 2 because the 
round is used to render numbers. 

)16( 𝑋()*+' = 𝑋,-"' + 𝑟𝑎𝑛𝑑(. ) × 𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛'	

By the difference obtained from (15), each student 
expresses his position using the relation (16). Obviously, 
in the iterative process until reaching the final results, if 
the new state created has a better objective function 
(minimum or maximum) from the point of view of 
optimizing the problem, it replaces the previous solution. 
Otherwise, the same previous solution is maintained in 
the initial population until reaching a more optimal point. 
It should be emphasized that the results obtained from the 
teacher phase are considered as the input values of the 
student phase. 
Learner phase 

The second phase of the algorithm is known as the 
learner phase. In this phase, based on interactions and 
compromises between students themselves, the level of 
knowledge and information in the class is improved. In 
such a structure, in a random process, each student 
chooses another student and changes his knowledge level 
by (17). 

)17( 

𝑋()*.

= A
𝑋/ + 𝑟𝑎𝑛𝑑(. ) × B𝑋/ − 𝑋0C					𝑖𝑓									𝑓(𝑋/) < 𝑓(𝑋0)
𝑋/ + 𝑟𝑎𝑛𝑑(. ) × B𝑋0 − 𝑋/C				𝑒𝑙𝑠𝑒

					 

𝑖 ≠ 𝑗 

If changing the level of knowledge related to the 
student in the training phase improves the fitness 
function, this position replaces the previous position in 
the primary population. Otherwise, the same previous 
position remains in the search space until a new result is 
obtained that is better than the previous one. As long as 
the algorithm is in the search space, similar to the teacher 
phase, the output obtained from the student phase is 
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considered as the population input for the next iteration. 
In the last iteration, this result is declared as the global 
output. the pseudo-code of this algorithm is given in [27] 
3.2. The objective function 

Main goal here is profit maximizing related to the 
microgrid including renewable sources and energy 
storage. The microgrid is trading energy with the areas 
including the main grid and adjacent microgrid. The 
objective function defined as incomes and expenses from 
the sale and purchase of energy. Finally objective 
function is optimized by the proposed algorithm, taking 
into account the stated constraints to ensure that the 
required load of the microgrid is met. Therefore, the 
objective function (OF) defined as: 

)18( 𝑂𝐹 = 𝑚𝑎𝑥 *+𝑅-,/ − -+𝐶-,/ ++𝐶0!,/01	

In (18), R U,i is the income from energy selling to the 
grid, while CU,i is the total electric energy cost purchased 
from the grid and CMG,i is the total cost paid to the 
adjacent microgrid for It is an energy exchange. It is 
obvious that the direction of the power between the 
microgrids can be positive or negative. The price of 
electricity supplied by a diesel generator in the adjacent 
microgrid is determined by a quadratic function [22]. 

)19( 𝐶0!,/ = 𝐶)/*1"/2*34 = 𝑎𝑃)/*1"/2*5 + 𝑏𝑃)/*1"/2* + 𝑐		

Considering daily planning with an hourly resolution, 
in (19), T is the time interval (in hours). Also, Ctie-line mg is 
the cost of purchasing power from the adjacent 
microgrid, and Ptie-line is the power exchanged between 
the connected microgrids in hour i (in kilowatts). 

The electric energy purchased from the grid can be 
defined by (20). 

Where MUi represents the electricity tariff price at 
hour i, CUb is the maximum price of purchased electricity, 
and PU,i is the electricity injected from the adjacent 
microgrid. 
4. Simulation Results 

The main goal of this work is to obtain the optimal 
generation, stored and exchange of power in order to 
maximize the profit of the microgrid. Therefore the short-
term planning of the system for the next day is done 
through a case study in a multi-zone system. Also, direct 
energy exchange between interconnected microgrids has 
been modeled to examine their integration in energy 
exchanges. 

The case study includes the main grid and two 
microgrids. The first microgrid includes the electric 
consumer, solar resources, and the energy storage 
system. The second microgrid consist of diesel generator 
with simultaneous production of heat and power. 

Two different scenarios are implemented to show the 
effectiveness of the proposed method by numerical 
studies. Power exchange tariffs are considered according 
to Table I [28]. 

 

Table I. Electricity tariffs for different time periods 
[29]. 

Time period Buy coefficent Sell coefficent 
   

on-peak 
(17-22.9-12) 1 0.56 

mid-peak 
(13-16) 0.89 0.45 

off-peak 
(1-8 ، 23-24) 0.78 0.34 

 
 This table shows the electricity tariff in three periods. 

The maximum cost of electric energy is 0.13 $ per 
kilowatt-hour, which is intended for the purchase of 
electricity during peak periods. 

The solar power system installed in the first microgrid 
needs information such as radiation and temperature in 
the region to produce power at its output. Irradiance and 
temperature data by hour for a sample solar system are 
obtained from [29]. 

The hourly changes of the power consumption 
(electricity) of the first microgrid are based on the 
information from [30]. 

It is also assumed that the SOC of battery storage is 
equal to 5 kWh at the initial time. Other main parameters 
of the battery, such as charge and discharge rate, 
efficiency, and maximum and minimum capacity of the 
battery, are stated in Table II. 

 
Table II. Initial condition. 

Time period Value 
Length of time interval, T, (hours) 1 

Primary energy in the battery (kWh) 5 
Battery charging efficiency 0.9 

Battery drain efficiency 0.9 
Battery Capacity, (kWh) 25 

Minimum energy in the battery (kWh) 2.5 
 
To verify the effect of peer-to-peer energy exchange,  

two scenarios are defined to check the proposed 
optimization method. 
4.1. First scenario: microgrid just connected to the 

network 
In this scenario, the second microgrid and its 

equipment are not discussed, the interaction between the 
distribution network and the first microgrid with 
equipment such as a battery energy storage system, solar 
system, and load is considered. Firstly, the generated 
power of the solar system (as the only source in this 
microgrid) is examined. The amount of output power of 
the solar strongly depends on the radiation and is not very 
sensitive to the ambient temperature [27]. 

During different times when the cost of supplied 
electricity in the main grid is high, the microgrid can 
supply its demand from solar sources or use batteries. 
Table III describes the amount of generated and 
exchanged energy with the main grid.  

 
Table III Power transfers in the network on a winter day (first scenario) 

)20( 𝐶J,$ = 𝑇 ×𝑀𝑈$ × 𝐶JK × 𝑃J,$ 	
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Battery 
power 

Selling to 
the network 

Buy from 
network 

hour Battery power 
Selling to 

the network 
Buy from 
microgrid 

hour 

0 24.9571 0 13 1.1847- 0 0 1 

0 53.5624 0 14 0.5097- 0 0 2 

0 44.8574 0 15 0.4577- 0 0 3 

0 18.4489 0 16 0.3067- 0 0 4 

0 18.7695 0 17 4.9123 0 0 5 

1.3508- 0 0 18 0 5.4210 0 6 

4.7125- 0 2.7284 19 5.4640 2.4496 0 7 

7.1115- 0 0 20 10.5990 11.7315 0 8 

10.3415- 0 28.4815 21 0 39.1741 0 9 
0 0 32.7068 22 0 43.4589 0 10 

0 0 6.3793 23 0 28.6394 0 11 

0 0 6.7773 24 0 38.6344 0 12 

 
 

When the cost of purchased electricity from the grid 
is low, the microgrid can supply electricity from the grid 
and even store its excess in the battery to sell in other 
hours. This planning maximizes the profit of the 
microgrid owner. 

 
Fig. 4 The result of optimal planning in the first 

scenario. 
In Table III the second and third columns show the 

power purchased and sold from/to the grid, respectively. 
The last column describes how BESS takes part in the 
system. Fig. 4 shows early hours production of renewable 
energy sources is less than energy consumption of the 
microgrid, so the battery is been activated to compensate 
the energy shortage. 

Then, with the increase in solar energy production 
due to the sun's radiation, the microgrid's energy 
requirement is provided. The excess energy is managed 
by BESS. Due to the high price of buying electricity, 
energy is sold to the grid. Late at night, electricity 
production from renewable energy sources decreases 
again. Hence, the lack of microgrid energy consumption 

comes from BESS and the remaining energy demand, 
purchased from the grid. 

 
Fig. 5 Battery behaviour in the first scenario. 
Fig. 5 shows that in the early hours, sufficient energy 

is stored in BESS, and then the battery SOC decreases 
due to energy needs. BESS stored energy equals 100% 
near 9:00 AM due to maximum renewable energy 
generation from sources. At the end of the day, again, 
storage is depleted due to BESS energy usage. 

 Finally, Table IV describes income from selling 
energy to the grid and the cost of buying energy from the 
grid for 24 time periods. The summation of the fourth 
column values is the maximum system profit per day. 

Net zero summation of simultaneous buying and 
selling occurs during some time spans in a day. Because 
microgrid electric energy is directly supplied from the 
BESS at these times. Therefore, no electric energy is 
purchased from the main grid at these times.  

There will also be no network sales. Based on Table 
IV, it seen that costs ultimately lead to the final optimal 
value, which is a kind of confirmation of the correctness 
of the results. 

 
 
 
 
Table IV Power transfers in the network on a winter day (first scenario) 
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difference 
The cost of 

buying 
Profit 

from sale 
hour difference 

The cost of 
buying 

Profit 
from sale 

hour 

1.4600 0 1.4600 13 0 0 0 1 
3.1334 0 3.1334 14 0 0 0 2 
2.6242 0 2.6242 15 0 0 0 3 
1.0793 0 1.0793 16 0 0 0 4 
1.0980 0 1.0980 17 0 0 0 5 

0 0 0 18 0.2396 0 0.2396 6 

0.3547- 0.3547 0 19 0.1083 0 0.1083 7 

0 0 0 20 0.5185 0 0.5185 8 

3.7026- 3.7026 0 21 2.8519 0 2.8519 9 

4.2519- 4.2519 0 22 3.1638 0 3.1638 10 

0.6469- 0.6469 0 23 2.0849 0 2.0849 11 

0.6872- 0.6872 0 24 2.8126 0 2.8126 12 

11.5312 9.6432 21.1744 Total - - -  
 
 

4.2. The second scenario: microgrid connected to a 
network and adjacent to other microgrids 

In this scenario, it is assumed that a microgrid is 
connected to the primary energy system, allowing peer-
to-peer (P2P) energy trading with it. The microgrid is 
powered by a gas-powered generator, renewable energy 
sources, BESSes, primary grids, or adjacent systems. The 
existing fossil fuel-fired microgrid, whose cost function 
is defined in (8), has coefficients of a=0.0024, b=0.0118, 
and c=0.2940. The temperature of this equipment is 
assumed to be 90 degrees Celsius. 

It is obvious that the amount of gas purchased by the 
second microgrid depends on the consumption of the 
CHP diesel generator. 

 
Fig. 5 The amount of electrical and thermal load in 

the second microgrid 
The hourly amount of electrical and thermal load of 

the second microgrid that must be supplied in kW is 
shown in Fig. 5. 

The price of natural gas in gas distribution networks 
is considered a rate of 0.14 units per cubic meter fixed. 

The income of the second micro-grid is obtained from the 
difference in the amount of energy sales compared to the 
natural gas cost. The amount of exchanged power 
between two microgrids is illustrated in Fig. 6. 

 
Fig. 6 Energy exchange between microgrids in the 

second scenario 
In this scenario, the transfer limit between microgrids 

is considered to be 20 kilowatts by interconnection line. 
In this case, it should be determined which source 
provides energy to the other microgrid throughout the 
day. 

That is obvious, the surplus generated energy at this 
time was sold to the power network or stored in the 
BESS. Like the first scenario, the algorithm maximizes 
the wholesome system profit. Optimization outputs are 
shown in Fig. 7. 
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Fig. 7 The result of optimal planning in the second 

scenario 
The convergence curve of the objective function in 

the second scenario is shown in Fig. 8 and it has been 

seen that the most optimal value of the target function, is 
about $ 14.05 per day.  

 
Fig. 8 The convergence curve of the objective 

function in the second scenario 
 

 
Table V Hourly Power transfers between micro-grids in a day in Kwh (second scenario) 

Exchanged 
Energy 

Gas 
powered 

Generator 
CHP hour 

Exchanged 
Energy 

Gas 
powered 

Generator 
CHP hour 

10.1843 15.0159 2.4000 13 7.8589 8.3918 0.2400 1 
9.7184 19.8842 2.1600 14 7.1686 7.6311 0.3360 2 
9.9284 23.2441 1.9200 15 7.1305 7.5310 0.4320 3 
9.4652 23.1150 2.6400 16 6.8913 7.1136 0.7200 4 
9.9305 27.2684 2.8800 17 7.5057 7.7814 0.9600 5 
12.4762 26.3797 3.1200 18 7.2089 8.0134 1.3200 6 

13.0914 24.6110 3.3600 19 6.8939 7.8185 1.2000 7 

13.1478 22.5009 3.6000 20 7.4923 8.6569 0.9600 8 

19.9744 25.8776 3.1200 21 12.9342 14.0384 1.6800 9 

19.9958 26.0526 2.4000 22 12.5421 13.7087 2.1600 10 

6.7408 9.5932 2.1600 23 12.8247 13.9493 2.4000 11 

0.6872- 0.6872 0 24 2.8126 0 2.8126 12 

 
 
The results of generated and exchanged energy in the 

second micro-grid, are given in Table V. Results of this 
table show that the participation of the CHP in providing 
electric power is weaker than the diesel generator. This is 
due to the fact that the amount of electric production for 
this equipment depends on its heat. In addition, this 
equipment is cost-effective with certain gas consumption, 
and it can provide the thermal load and participate in 
electric power generation, which is one of the advantages 
of such equipment. 

 
5.  Conclusion 

This paper has studied microgrids that provide peer-
to-peer (P2P) energy trading with the neighboring and 
upstream grid, as well as a battery for storing excess 

energy to minimize costs and increase profits. To clarify 
the distinction between the employed optimization 
method, two scenarios are studied. 

 In the first scenario, a power network grid with DG, 
load, and battery is assumed, and the advantages of DG 
storage are considered. In the second scenario, a 
microgrid containing fossil fuel sources for the peer-to-
peer (P2P) energy trading market was placed near the 
primary power grid. TLBO algorithm employed for 
optimal operation of these microgrids, considering hourly 
electricity tariffs during one day. Due to the difference in 
the price of buying and selling electricity, the energy 
exchanges with the grid occur at optimal electricity prices. 
Based on the results, the profit from trading in the first 
scenario on a winter day was $11.53 per day. In the second 
scenario, the presence of the neighboring microgrid, with 



 
325                     Citation information: DOI 10.48308/ijrtei.2024.235531.1044, International Journal of Research and Technology in Electrical Industry 

 

IJRTEI,	2024, VoL3, No. 1, pp. 317-326 
 

 

the possibility of peer-to-peer energy exchange between 
microgrids, has led to an increase of about 21% compared 
to the first, which was a significant increase. Based on the 
results, this approach motivates microgrid operators to 
make the most economical decisions.  
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