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This paper introduces a novel adaptive second-order sliding mode algorithm for 

finite-time control of uncertain nonlinear systems. Traditional first-order sliding 

modes are hindered by chattering and dependence on the upper bound of 

uncertainty. Although adaptive sliding modes with dynamic gains remove the need 

for this upper bound, they still suffer from chattering and lack finite-time stability. 

The proposed algorithm incorporates an additional term in the control law, 

ensuring a smooth control signal, eliminating chattering, and achieving finite-time 

stability of the closed-loop system. This method is applied to a thrust vector-based 

flying object for pitch angle tracking amidst aerodynamic coefficient uncertainties 

and environmental disturbances. The performance of the proposed thrust vector 

system is demonstrated through computer simulations, comparing it with two other 

adaptive first-order and an adaptive super-twisting sliding mode methods. 

Simulation results show significant improvements in control performance, 

including reduced chattering and enhanced stability, underscoring the practical 

effectiveness of the proposed method. 
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1. Introduction 

Power transformers are among the most critical and 

expensive pieces of equipment for power system utilities. 

They are essential components of the power grid, playing 

vital roles in both transmission and distribution systems. 

Therefore, it is crucial to ensure that these transformers 

are properly managed, controlled, and maintained for 

long-term use. Early detection of transformer faults is 

important as it helps avoid service interruptions, 

abnormal operating conditions, and unwanted service 

losses. Fault occurrences, such as overheating failures, 
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partial discharges (corona), or arc discharges (arcing), 

expose the insulating medium to abnormal electrical or 

thermal stresses. For example, internal arcing initially 

causes insulation breakdown. In such a state, the 

transformer must be disconnected to address the affected 

winding, requiring costly repairs and leading to 

prolonged downtime [1]. A variety of approaches have 

been devised for interpreting DGA, spanning both 

traditional and computational intelligent methods. 

Conventional methods such as the Key gas method 

introduced in [2, 3], the Doernenburg ratio [4], and 
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Rogers ratio [5] rely on evaluating the concentration and 

ratio of dissolved gases. Furthermore, graphical methods 

like  Duval triangle 1 [6], Duval pentagon 1 [7] have been 

introduced, showcasing their superior accuracy. In recent 

times, computational intelligence methods have gained 

increased attention due to significant advancements in 

processor speed and computer memory capacity. 

Artificial Intelligence (AI) classification techniques 

have enhanced fault detection. In [8], a new decision-

making framework based on Support Vector Machines 

(SVM) for transformer fault diagnosis is proposed; this 

framework is capable of performing effective pattern 

recognition on seven main operating states of 

transformers. In [9] , a model based on deep learning is 

proposed for online inspection of transformer insulations. 

In [10], a new fault gas interpretation approach for oil-

filled power transformers is proposed. In [11], graphical 

analysis of dissolved gases in oil has been conducted 

using the Duval triangle method to better estimate 

internal faults in transformers with the aid of a fuzzy 

inference system (FIS) based on logical rules. In [12], 

fault classification in power transformers based on DGA 

is conducted using various machine learning techniques. 

Each machine learning algorithm possesses its own set of 

advantages and disadvantages, and the selection of the 

appropriate classifier among the available options is 

crucial to achieve the desired performance. In [13], a DT 

has been constructed for detecting transformer faults 

using different gas ratios and varying gas concentrations. 

Despite the improved accuracy of early fault detection 

methods for power transformers, many of these 

approaches present challenges for users, requiring a high 

level of expertise in machine learning and the use of 

powerful tools. However, simpler ratio-based methods 

were more user-friendly for engineers but lacked 

adequate accuracy. Therefore, presenting a method that 

combines the simplicity of ratio-based approaches with 

high accuracy will be crucial. 

The objective of this paper is to introduce a new gas 

ratio (NGR) method based on the DT algorithm for 

detecting incipient faults in transformers using DGA. 

This method incorporates ten gas ratios to create a new 

ratio-based approach. The advantage of this method is 

quick and easy detection, along with proper accuracy. In 

section 2, DGA is described along with the interpretation 

methods of this test. Section 3 describes the basic 

concepts and settings of the DT. In section 4, it is said 

how the DT was used to build the NGR method. The 

section 5 is the statement of the results of the method, and 

in section 6, the conclusions of the discussions have been 

made. 

2. Dissolved gas analysis 
DGA testing is crucial as it furnishes transformer 

specialists with vital insights into the emergence of 

critical conditions. In fact, conducting this test allows for 

the assessment of the oil-immersed transformer's 

condition and facilitates the detection of potential defects 

before the gas levels released from the transformer oil 

reach critical thresholds. Different methods exist for 

analyzing dissolved gases in transformer oil; Some of 

these methods merely determine faults based on gas 

values, while others identify faults based on gas ratios, 

and still others graphically detect faults. 

Rogers Ratios Method [5] is summarized in Table 1. 

It uses three gas ratios indicating five different types of 

faults, depending on the values of the ratios in column 1 

through column 3 of Table 1. The limitation of the Rogers 

Ratios Method is that it cannot identify faults in a 

relatively large number of DGA results (typically 35%), 

because they do not correspond to any of the cases in 

rows of Table 1, even when values are high and there is 

obviously a fault [2]. 

Doernenburg ratio method [4] is a historic method 

less used today. It has the same limitation as the Rogers 

ratio method. The values for these gases are first 

compared to special concentrations based on Table 2 and 

flow chart method is shown in Figure 1 [2]. 
The most important graphical methods used in the 

industry today are the Duval triangle 1 and the Duval 

pentagon 1. Fault regions in these methods are located 

within the triangle and pentagon, respectively. By placing 

samples within these regions, the type of fault can be 

determined. These methods are illustrated in Figures 2 

and 3, respectively. Graphical methods are newer 

approaches and generally offer better accuracy in fault 

detection. Moreover, fault detection in these methods is 

more user-friendly for the operators. 

3. Decision Tree 

A DT is a supervised learning approach used in 

machine learning. In this approach, a classification or 

regression DT is employed as a predictive model to 

analyze a set of data. Supervised learning is a machine 

learning approach for problems where each data point 

contains features and a specified label. When quantitative 

outputs are predicted, or when continuous values can be 

taken by the target variable, a regression tree is called. 

Conversely, when qualitative outputs are predicted, or 

when a discrete set of values can be taken by the target 

variable, a classification tree is called. In this study, 

classification DTs were used. 

A tree represents a hierarchical structure with a set 

of nodes, branches, and leaves. In this structure, leaves 

represent class labels. Each node contains the terms and 

conditions of the DT. Branches in this structure indicate 

the “YES” or “NO” status of a condition applied to a 

node. 

DTs are among the most popular and useful machine 

learning algorithms due to their intelligibility, simplicity, 

and interpretability. A single DT is easy to understand for 

anyone with a basic knowledge of mathematics. In this 

study, a single DT was used to detect transformer faults, 

and its accuracy and efficiency were analyzed. 

For the development of a DT, certain parameters are 

needed. In this case four important parameters need to be 

determined:  

1- DT features 

In the initial stage, the necessary features to 

construct the tree should be generated. To achieve this, 

the primary features of the dataset, comprising the 
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concentration of five gases dissolved in the transformer 

oil are utilized and new features, encompassing ten gas 

ratios are created. These gas ratios differ from those 

outlined in the IEEE C57.104 standard. The newly 

introduced features are illustrated in Figure 4. 

2- Maximum depth of the DT  

The second parameter is Max-depth. Maximum 

depth of DT specifies the depth of the roots of a DT. In 

other words, the number of lower layers of the root node 

is determined by it. 

3- Impurity criterion of the DT 

The third parameter is the impurity measure. The 

impurity function measures the extent of purity for a 

region containing data points from possibly different 

classes. There are several ways to measure impurity. In 

this study, two methods were used: the Gini Index and 

Entropy. These criteria are defined according to 

equations (1) and (2) [14]. 

Gini 
index: 1

(1 )
K

mk mk mk mk

k k k

p p p p

 

     (1) 

Entropy: 
1

log
K

mk mk

k

p p


   (2) 

Here, pmk represents the proportion of samples 

belonging to node m (Nm) and class k, yi is the class of 

sample, and it is defined as follows [14]:  

1
( )mk i

m

p I y k
N

   (3) 

Table. 1. Rogers ratio method [2]. 

C2H2/C2H4 CH4/H2 C2H4/C2H6 Suggested fault diagnosis 

< 0.1 0.1 to 1.0 < 1.0 Normal 

< 0.1 < 0.1 < 1.0 
Low-energy density 

arcing 

0.1 to 3.0 0.1 to 1.0 > 3.0 
Arcing / High-energy 

discharge 

< 0.1 0.1 to 1.0 1.0 to 3.0 
Low temperature 

discharge 

< 0.1 > 1.0 1.0 to 3.0 Thermal < 700 °C 

< 0.1 > 1.0 > 3.0 Thermal > 700 °C 

 

Table. 2.  Limit concentrations of dissolved gases [4]. 

Key gas Concentration (L1) 

H2 100 

CH4 120 

CO 350 

C2H2 1 

C2H4 50 

C2H6 65 

 

Fig. 1. Doernenburg ratio flow chart [2]. 

 

Fig. 2. Duval Triangle 1 [2]. 

 

Fig. 3. Duval Pentagon 1 [2]. 
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Fig. 4. Possible and used DT features. 

4- Minimum samples required to split branches 
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This setting determines the minimum number of 

samples required to split an internal node. For example, 

if the Min-samples-split is set to 10, the nodes will be 

split until the samples of a class do not reach 10 samples, 

provided that they do not exceed the specified Max-

depth. 

4. Employment the DT in developing the new gas 

ratio method 

In this paper, leveraging the beneficial effects of 

artificial intelligence algorithms, a new method based on 

gas ratios has been introduced, utilizing a suitable DT and 

gas ratios as features of this DT. The methodology of this 

paper is visually represented in the flowchart provided in 

Figure 5. 

To construct a DT for fault detection, a dataset 

comprising 589 samples has been utilized, as outlined in 

Table 3. These samples were obtained from the Egyptian 

Electricity Holding Company (EEHC) [15]. The dataset 

encompasses concentrations of five gases in parts per 

million (ppm): hydrogen, ethane, methane, ethylene, and 

acetylene. 

The gases mentioned are dissolved in the oil sample, 

and their values are measured in ppm. The notations used 

in Table 3 include (T is Temperature): 

PD: Partial discharge 
D1: Low energy discharge 

D2: High energy discharge 

T1: Low temperature overheating (T < 300ºC) 

T2: Medium temperature overheating (300º < T < 

700ºC) 

T3: High temperature overheating (T > 700ºC) 

 

According to the settings introduced for the DT in 

Section 3, this section examines the impact of different 

settings on the performance of the DT. For this analysis, 

two important statistical indicators are used. 

Table. 3.  Count of samples for each fault type [15]. 

Fault Type PD D1 D2 T1 T2 T3 

Count 74 91 149 111 60 104 

 

Start

Data 

collection

EEHC

D a t a  B a s e

Data classification 

into six fault types

Divide the data into 

training and test 

samples

Creating Decision 

Tree by training 

samples

Fault type detection 

by New Gas Ratio

Output:

Determining the type 

of fault

End

Test

Train

 
Fig. 5. Proposed method flow chart. 

The Accuracy metric for selecting the best model and 

the Recall metric for comparing the model's performance 

with other methods. These two statistical indicators are 

defined according to equations (4) to (7). 

  

Accuracy = 
TP +TN

TP + TN + FP + FN
 (4) 

Recall = 
TP

TP + FN
 (5) 

Precision = 
TP

TP + FP 
 (6) 

F1-score = 
2×Precision × Recall

Precision + Recal
 (7) 

 

In these relationships, TP, TN, FP, and FN represent true 

positive, true negative, false positive, and false negative, 

respectively. 

 

5. Results and discussion 

To construct the DT, the dataset samples are initially 

divided into training and testing samples. In this process, 

80% of the samples are allocated as training data, while 

the remaining 20% are designated as test data. This DT 

is then built using the training samples. In order to select 

the best tree model for detecting transformer faults, the 

effect of changing three main tree settings, including 

maximum depth (Max-Depth), impurity criterion, and 

minimum samples required to split a node (Min-Sample-
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Split) on accuracy score index has been investigated. 

Table 4 shows the impact of changing two settings, Max-

Depth, and Min-Sample-Split on Accuracy Score for 

training samples of DTs with Gini impurity criterion. 

Table 5 presents the same changes for test samples. 

According to Table 4, decreasing Min-Sample-Split and 

increasing Max-Depth lead to an increase in the 

algorithm's accuracy, attributed to the enlargement of the 

DT and an increase in its node count for better detection 

of the maximum discernible samples. However, as shown 

in Table 5, reducing Min-Sample-Split and increasing 

Max-Depth do not always result in an increase in model 

accuracy. This is because the model becomes overfit 

from a certain point onwards, leading to a significant gap 

between the model's accuracy on training and test 

samples. For instance, with Min-Sample-Split=2 and 

Max-Depth=9, the difference in model accuracy between 

training and test samples reached 15.67%. 

Tables 6 and 7 respectively illustrate the impact of 

changing two settings, Max-Depth, and Min-Sample-

Split, for training and test samples of DTs with Entropy 

impurity criterion on Accuracy Score. The highest 

accuracy for test samples under this criterion is 86.44%, 

while with the Gini criterion, the maximum test sample 

accuracy was 84.75%. Furthermore, it's crucial to note 

the significance of the difference in model accuracy 

between training and test samples. According to Tables 4 

and 5, when the maximum test sample accuracy is 

achieved, the difference in accuracy between test and 

training samples reaches 8.24%. In contrast, this 

difference is only 2.52% for DTs with the Entropy 

criterion, indicating better performance of the selected 

model. Therefore, the final DT selected has an Entropy 

impurity criterion, with Min-Sample-Split=6 and Max-

Depth=6. 

Table. 4.  Adjusting Max-Depth and Min-Sample-Split for training samples of DTs with Gini impurity criterion. 

Min-Sample-Split 

2 3 4 5 6 7 8 9 10 

M
a

x
-D

ep
th

 

3 79.4 79.4 79.4 79.4 79.4 79.4 79.4 79.4 79.4 

4 85.35 85.36 85.35 85.35 85.35 85.14 85.14 84.93 84.93 

5 89.38 88.96 88.86 88.96 88.96 88.54 88.54 88.32 88.32 

6 90.87 90.45 90.02 90.02 90.02 89.38 89.38 89.17 89.17 

7 92.99 92.36 91.72 91.72 91.51 90.87 90.87 90.66 90.66 

8 95.12 94.27 93.42 93.42 92.78 92.14 91.72 91.51 91.51 

9 97.03 95.97 95.12 94.69 94.05 93.42 92.99 92.57 92.57 

 

Table. 5. Adjusting Max-Depth and Min-Sample-Split for test samples of DTs with Gini impurity criterion. 
  Min-Sample-Split 

   2 3 4 5 6 7 8 9 10 

M
a

x
-D

ep
th

 

3 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 77.12 

4 78.81 78.81 78.81 78.81 78.81 78.81 78.81 79.66 79.66 

5 82.2 82.2 82.2 82.2 82.2 82.2 82.2 83.9 83.9 

6 83.9 84.75 84.75 84.75 84.75 82.2 82.2 83.05 83.05 

7 84.75 83.05 82.2 82.2 83.9 83.9 83.9 83.9 83.9 

8 82.9 84.75 83.05 83.05 83.9 81.36 83.05 83.05 83.05 

9 81.36 83.05 83.05 82.2 83.05 82.2 82.2 82.2 82.2 

 

Table. 6. Adjusting Max-Depth and Min-Sample-Split for training samples of DTs with Entropy impurity criterion. 
  Min-Sample-Split 

   2 3 4 5 6 7 8 9 10 

M
a

x
-D

ep
th

 

3 81.53 81.53 81.53 81.53 81.53 81.53 81.53 81.53 81.53 

4 84.29 84.29 84.08 84.08 84.08 84.08 84.08 84.08 84.08 

5 87.26 87.05 86.84 86.84 86.84 86.84 86.84 86.84 86.84 

6 89.6 89.38 88.96 88.96 88.96 88.75 87.69 87.69 87.69 

7 92.99 92.57 91.93 91.93 91.3 91.08 90.02 89.6 89.6 

8 96.39 95.75 94.9 94.06 93.63 93.21 92.14 91.72 91.51 

9 97.24 96.6 95.33 94.48 94.06 93.21 92.14 91.72 91.51 
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Table. 7. Adjusting Max-Depth and Min-Sample-Split for test samples of DTs with Entropy impurity criterion. 
  Min-Sample-Split 

   2 3 4 5 6 7 8 9 10 

M
a

x
-D

ep
th

 

3 80.51 80.51 80.5 80.51 80.51 80.51 80.51 80.51 80.51 

4 79.66 79.66 79.66 79.66 79.66 79.66 79.66 79.66 79.66 

5 81.36 81.36 81.36 81.36 81.36 81.36 81.36 81.36 81.36 

6 86.44 86.44 86.44 86.44 86.44 83.9 84.75 84.75 84.75 

7 83.05 84.75 83.05 83.05 84.75 83.05 83.05 83.9 84.75 

8 83.9 82.2 80.5 82.2 83.9 82.2 82.2 83.05 83.9 

9 80.5 81.36 82.2 82.2 83.9 82.2 82.2 83.05 83.9 

 

Accuracy score calculated as below: 

1

1

Accuracy
AccuracyScore

n

i ii

n

ii

N

N









  

(8) 

Where, i is the class number, n is the count of classes, and 

Ni is the number samples in class i. 

Figure 6 illustrates the confusion matrix related to 

selected DT. The provided confusion matrix visually 

represents the performance of a classification model in 

predicting six different faults. The matrix layout is a 6x6 

grid where rows represent the true labels and columns 

represent the predicted labels. Each cell at the 

intersection of a row and column shows the number of 

instances where the true label (row) was predicted as the 

corresponding label (column). This confusion matrix 

provides a comprehensive view of how well the 

classification model is performing across the six different 

classes. The diagonal elements (highlighted cells) 

represent the number of correct predictions for each class, 

while the off-diagonal elements show the 

misclassifications. Based on this confusion matrix, some 

statistical indexes calculated as Table 8. 

The procedure chart is shown in Figure 7. This flowchart 

is obtained using different gas ratios. As mentioned in the 

previous sections, fault detection is done easily by this 

method. All conditions of this DT are “<” (smaller than) 

and gas ratios are compared in this way. If the condition 

is true, the branches are extended from the right side, and 

if it is not, the branches are extended from the left side of 

that node and finally reach the type of fault. 

In Table 9, a performance comparison between the 

proposed method and prevalent fault detection methods 

is presented based on the Recall statistical index. The 

results indicate that the NGR method demonstrates the 

highest performance in all fault classes except D1. 

Specifically, for the PD fault class, the NGR method 

achieves approximately 54% greater accuracy than the 

Duval Pentagon 1 and 28% greater than DTF (Decision 

Tree to Fault type detection) method described in [16]. 

Additionally, when considering all test data, the proposed 

method surpasses DTF, Duval Pentagon 1, Duval 

Triangle 1, and IEC 60599 ratio by 8.1%, 24.2%, 25.6%, 

and 44.5% respectively. 

The proposed method in this article surpasses limitations 

found in traditional techniques like the Doernenburg ratio 

and Rogers ratio methods. These established methods, 

while valuable, suffer from restricted fault class 

identification.  Instead of differentiating between various 

discharge fault types, they lump all discharge activity 

under a single, broad category labeled "D" (Discharge). 

This lack of granularity can lead to misdiagnosis and 

hinder targeted maintenance actions. The proposed 

method, however, offers a more nuanced approach, 

distinguishing between different discharge fault types, 

allowing for more precise fault identification and 

facilitating focused repair strategies. 

Utilizing ten gas ratios in procedure resulted in achieving 

a high level of fault detection accuracy, surpassing the 

performance of DTF [16] model. The primary motivation 

behind employing a DT algorithm for constructing the 

new proportional model lies in the precise and explicit 

formation of numerical conditions for constructing the 

decision nodes of NGR approach. 

One drawback of this method compared to the 

Doernenburg Ratio or Rogers Ratio methods is its 

inability to identify the normal status of samples. To 

address this limitation, the DT specifically designed for 

normal/faulty (DTNF) sample status identification in [16] 

can be employed. In practice, DTNF can be utilized 

initially; if its output indicates a fault, the method 

proposed in this paper can be applied to determine the 

fault type. However, it is important to note that the 

primary objective of this paper is to present a fault 

detection method, and sample health status diagnosis is 

not the main focus. 

 

6. Conclusion 

The proposed NGR method based on a DT algorithm 

significantly enhances the accuracy and simplicity of 

fault detection in power transformers using DGA. By 

integrating ten gas ratios, this method provides a robust 

tool for identifying various types of transformer faults, 

achieving a maximum test sample accuracy of 86.44% 

with the Entropy impurity criterion. Specifically, the 

method demonstrated superior performance in detecting 

PD faults with an accuracy of 93.3% and T3 faults with 

an accuracy of 90.9%. Although the method cannot 

identify normal operational states, it can be combined 

with existing techniques for comprehensive fault 

diagnosis. The final DT model selected with a Min-

Sample-Split of 6 and Max-Depth of 6 showed a recall of 

76.5% for low energy discharge (D1) faults, 85.7% for 

high energy discharge (D2) faults, 94.4% for low-

temperature overheating (T1) faults, and 80.0% for 

medium-temperature overheating (T2) faults. This study 

demonstrates the potential of the NGR method to improve 

transformer maintenance practices, reducing downtime 

https://doi.org/10.48308/ijrtei.2023.104276
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and repair costs, thereby contributing to the overall 

reliability and efficiency of power systems. 

Predicted

T
ru

e

 

Fig. 6. Confusion matrix for the selected DT Model. 

 

Table 8.  Performance evaluation of NGR model. 

Fault Precision Recall F1-Score Accuracy 

PD 1.000 0.933 0.965 0.990 

D1 0.722 0.765 0.743 0.919 

D2 0.882 0.857 0.869 0.919 

T1 0.944 0.944 0.944 0.971 

T2 0.800 0.800 0.800 0.971 

T3 0.833 0.909 0.870 0.936 
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Fig. 7. NGR method to detect incipient faults in oil immersed transformers.
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