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This paper investigates the design of multiple-input multiple-output (MIMO) 

controllers for a half-car suspension system, aiming to enhance ride quality by 

minimizing displacement and angular deviations. The nonlinear equations 

describing the half-car model are derived, incorporating control inputs and road 

disturbances. The study explores centralized, decentralized, and semi-centralized 

(sequential) control strategies using proportional-integral (PI), proportional-

integral-derivative (PID), and 𝐻∞  robust control techniques. The centralized PI 

and 𝐻∞  controllers are designed using Markov parameters and sensitivity 

weighting functions, respectively. In the decentralized approach, control designs 

involve inverse decoupling, state feedback decoupling, PID tuning against 

disturbances, and mixed-sensitivity 𝐻∞  optimization. The semi-centralized 

strategy sequentially closes control loops using a PID architecture. Extensive 

simulations are conducted with step and road bump disturbance inputs applied to 

the closed-loop system. Controller performance is evaluated based on 

displacement suppression, control effort, settling time, and robustness to external 

shocks. The proposed decentralized 𝐻∞  controller achieves superior vibration 

attenuation to the picometer level while exhibiting strong disturbance rejection 

capabilities. The comparative analysis underscores the advantages of the 

developed control schemes over existing solutions, contributing to enhanced 

passenger comfort in automotive suspension systems. 
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1. Introduction 

Active suspension systems for vehicle seats have 

garnered substantial research attention due to their 

potential to improve ride quality and isolate passengers 

from vibrations originating in the vehicle body and road 

disturbances [1]-[26]. Sophisticated control 

methodologies have enabled active seat suspensions to 

mitigate vibrations across a wide band of frequencies 

adaptively. Recent studies have developed robust 

optimization approaches to deal with uncertainties and 
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disturbances for full vehicle models, such as multi-

objective optimization [1], intelligent, active force 

control schemes [2], event-triggered 𝐻∞ control [3], and 

event-triggered state feedback [4]. 

Significant work has also focused on control design 

and modeling for half-car suspension systems, including 

modeling and simulation [5], adaptive vehicle stability 

control [6], comparative analysis of techniques like PID, 

LQR, fuzzy logic, and ANFIS [7], feedback linearization, 

and LQR control [8], sliding mode control [9], and 
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optimal state-feedback control [10]. Other robust 

solutions for full vehicle systems include a linear matrix 

inequality (LMI) technique for a semi-active 

electrorheological damper [11] and a methodology for 

general suspension parametric uncertainty [12]. 

Intelligent control strategies have also been explored 

for full vehicle systems, including fuzzy logic controllers 

[13, 14] and genetic algorithm optimization of fractional-

order PID gains [15]. A key application area has been off-

road vehicle seats [16, 17], which experience 

aggressively uneven terrain and require vibration 

attenuation over large amplitudes. Investigations have 

tailored solutions to this setting through model-free 

control not relying on function approximation [18]. 

Unique actuator concepts have also been conceived, such 

as a prototype electromagnetic stiffness element enabling 

energy recovery [19]. 

Beyond advanced control techniques, modeling seat 

mechanical properties for full vehicle systems has 

received attention to capturing multi-linkage cushion 

dynamics [20] and seat-passenger coupling [21]. While 

most research has focused on vertical oscillations, some 

have addressed multiple degrees of freedom 

encompassing roll and pitch [22, 23] to better represent 

the rotation of real automobile seats over uneven ground. 

Research has also explored the concept of fault 

tolerance [24] and time delay reduction [25] to advance 

the real-world feasibility of full-vehicle active seat 

suspensions. Moreover, alternative actuators have been 

tested, including sliding mode controlled 

electromagnetic suspensions [26], showing promise over 

conventional hydraulic or pneumatic schemes. The wide 

array of advanced solutions illustrates the extensive work 

towards refining active seat suspension performance and 

deployment capability for both full and half-vehicle 

models. 

The controllers designed for the half-car suspension 

system to date are both intricate and tend to transmit 

significant displacements to the vehicle's floor. This 

paper articulates the equations governing the half-car 

suspension system, detailing the application of control 

inputs and disturbances. Subsequently, we present 

designs for centralized, decentralized, and semi-

centralized (sequential) controllers utilizing various 

approaches, including Proportional-Integral (PI), 

Proportional-Integral-Derivative (PID), and 𝐻∞ control 

strategies. The simulation results illustrating the car's 

floor displacement and angular changes are then 

provided, along with a comparative analysis against 

previous studies. The findings indicate a notable 

improvement in displacement performance relative to 

earlier methods. 

This paper is organized as follows: Section 1 presents 

the state space and disturbance equations governing a 

half-car suspension system. In Section 2, we design 

centralized PI and 𝐻∞ controllers, followed by the 

development of decentralized PI controllers using both a 

decoupling method with the inverse system matrix and a 

state feedback approach. Additionally, we explore the 

implementation of PID and 𝐻∞ controllers. Finally, a 

semi-centralized PID controller is introduced. Section 3 

provides the simulation results and comparative analysis. 
 

2. System Formulation 

 

The suspension system of vehicles has consistently 

garnered attention since its inception, as an effective 

suspension system that significantly enhances passenger 

comfort. This report focuses on a model representing half 

of a car's suspension system. When the suspension 

system is adequately designed, there is no need for spring 

seats to mitigate passenger vibrations; instead, the seat 

bases remain stable, effectively preventing any shaking. 

The half-car suspension system under consideration is 

derived from [27] and illustrated in Fig. 1. It has been 

optimized to achieve peak performance without control 

inputs, relying solely on optimization algorithms to 

identify optimal parameter values, including the stiffness 

coefficients of the springs and dampers. 

 
Fig. 1.  Half-car suspension system model 

 

Vehicle suspension systems can be modeled as a quarter 

or half-vehicle model. Fig. 2 represents a modeling of a 

quarter vehicle suspension system which consists of a 

wheel and its attachments with mass (Mw) and stiffness 

(Kt), Sprung mass (Mb), suspension stiffness (Ks), and 

damping (Cs). The excitation road input is a speed bump 

whose profile could be modeled as a cosine function as 

in (1). 

𝑦𝑜(𝑡) = {
−
𝐻

2
(cos (

2𝜋𝑣𝑡

𝐿
) − 1) ,    0 ≤ 𝑡 ≤

𝐿

𝑣
 

                               0,    𝑡 >
𝐿

𝑣

 (1) 

where L and H are the bump’s width and height in order, 

and v is the velocity of the car passing the bump. 

 
Fig. 2.  How to apply perturbation to a car wheel  

 

The optimal performance of this system without control 

inputs in response to disturbances caused by a vehicle 

traveling at a speed of 60 km/h over a 0.5 m long and 10 

cm high obstacle is illustrated in Fig. 3. 
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Fig. 3.  The best performance of the suspension system 

with optimization algorithms and without control input. 

 

As illustrated in Fig. 3, the car floor experiences a 

displacement of approximately 7 cm due to the 

disturbance, which poses significant risks and discomfort 

for passengers. The objective of this paper is to mitigate 

these vibrations to around one nanometer or less. 

The dynamic equations of the introduced system are 

shown in (2). 

 

 𝜔  ̈ = −   ( ̇ +    ̇ −  ̇ ) −    (  +    −   ) −      +     𝑜  

(2) 
 𝜔  ̈ = −   ( ̇ −    ̇ −  ̇ ) −    (  −    −   ) −      +     𝑜  

  ̈ = −     (   ̇ +  ̇ −  ̇ ) −      (   ̇ −  ̇ +  ̇ ) −      (   +   −   ) −      (   −   +   ) 

   ̈ = −   ( ̇ −    ̇ −  ̇ ) −    ( ̇ +    ̇ −  ̇ ) −    (  −    −   ) −    (  +    −   ) 

Similar to [28], by placing two control inputs in Fig.4 for 

the system in Fig.1, the state equations of the system 

change from (2) to (3). In practice, electrohydraulic 

actuators or permanent magnet linear motors can be used 

to produce the required forces u1 and u2 [11]. 

 

Fig.4. Half-car suspension model with control inputs 

 

Table I. System parameters 

Parameter Symbol Value 

Body mass    1794 kg 

Body inertia   3443.5 kg m2 

Front-wheel mass     87.15 kg 

Rear-wheel mass     140.04 kg 

Damping coefficient of 

front shock absorber 
    1190 N s/m 

Damping coefficient of 

rear shock absorber 
    1000 N s/m 

Front spring coefficient     66 824.2 N/m 

Rear spring coefficient     18 615 N/m 

Spring coefficient of the 

front tire 
    200 000 N/m 

Spring coefficient of the 

rear tire 
    200 000 N/m 

Front half-length    1.271 m 

Rear half-length    1.713 m 

 ̇ = 𝐴 + 𝐵𝑢 + 𝐸𝑑 

𝑦 =   + 𝐷𝑢 

𝐴 = 

[
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𝐵 =

[
 
 
 
 
 
 
 
 
 

0

−
 

𝑚𝑤𝑓

0
0
0

−
 1

𝐼

0
 

𝑚𝑏

0
0
0

−
 

𝑚𝑤𝑓

0
 2

𝐼

0
 

𝑚𝑏 ]
 
 
 
 
 
 
 
 
 

,       𝐸 =

[
 
 
 
 
 
 
 
0
𝐾𝑡𝑓

𝑚𝑤𝑓

0
0
0
0
0
0

0
0
0
𝑘𝑡𝑟

𝑚𝑤𝑟

0
0
0
0 ]
 
 
 
 
 
 
 

 ,      = [
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

] ,     𝐷 = [
0 0
0 0

] 

 

The values of nominal and optimized system parameters 

can be seen in Table I and Table II. 

As a result, the state space of the system is represented in 

the form specified in equation (4). 

 

 Table II. Optimized system parameters 

Optimum solution Upper bound Lower bound  
2497.9 2500 1000     

28 949.4 70 000 10 000     

2494.5 2500 1000     

11 115.7 70 000 10 000     

𝐴 = 103

[
 
 
 
 
 
 
 

0
 −2.6271

0
0
0

−0.0107
0

 0.0161

0.0010
 −0.0287

0
0
0

−0.0009
0

 0.0014

0
0
0

−1.5075
0

0.0055
0

 0.0062

0
 0

0.0010
−0.0286

0
0.0012

0
 0.0014

0
 −0.4222

0
0.1360

0
−0.0231

0
 0.0099

0
 −0.0364

0
0.0305
0.0010
−0.0033

0
 −0.0006

0
 0.3322

0
0.0794

0
0.0052

0
 −0.0223

0
 0.0287

0
0.0178

0
−0.0003
0.0010
 −0.0028]

 
 
 
 
 
 
 

 

𝐵 =

[
 
 
 
 
 
 
 

0
 −0.0115

0
0
0

−0.0004
0

 0.0006

0
0
0

−0.0071
0

0.0005
0

 0.0006 ]
 
 
 
 
 
 
 

         ,           𝐸 = 103

[
 
 
 
 
 
 
 

0
 2.2949

0
0
0
0
0
0

0
0
0

1.4282
0
0
0
0 ]

 
 
 
 
 
 
 

 

 = [
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0

]             ,            𝐷 = [
0 0
0 0

] 

(4) 

By transforming the system representation from state 

space to transfer function form, the system is represented 

as shown in equation (5): 

𝐺 = [
𝐺  𝐺  
𝐺  𝐺  

] 

𝐺 = 

𝐺  = 
0.00055741(𝑠 + 3.451𝑠 + 16.27) (𝑠 + 28.88𝑠 + 1448) (𝑠 + 2295)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

𝐺  = 
0.00055741(𝑠 + 2.134𝑠 + 28.5) (𝑠 + 10.81𝑠 + 1428) (𝑠 + 29.28𝑠 + 2568)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

𝐺  = 
−0.00036915 (𝑠 + 3.028𝑠 + 14.27) (𝑠 + 28.86𝑠 + 1456) (𝑠 + 2295)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

𝐺  = 
   0.00049752(𝑠 + 1.877𝑠 + 25.05) (𝑠 + 10.81𝑠 + 1428) (𝑠 + 29.21𝑠 + 2575)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

(5) 
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𝐺𝑑 = 

𝐺  = 
3195.3 (𝑠 + 11.59) (𝑠 + 3.451𝑠 + 16.27) (𝑠 + 28.88𝑠 + 1448)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

𝐺  = 
1985.8 (𝑠 + 4.456) (𝑠 + 2.134𝑠 + 28.5) (𝑠 + 29.28𝑠 + 2568)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

𝐺  = 
−2116.1 (𝑠 + 11.59) (𝑠 + 3.028𝑠 + 14.27) (𝑠 + 28.86𝑠 + 1456)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

𝐺  = 
1772.5 (𝑠 + 4.456) (𝑠 + 1.877𝑠 + 25.05) (𝑠 + 29.21𝑠 + 2575)

  (𝑠 +  3.239𝑠 + 15.36) (𝑠 + 2.018𝑠 + 26.52) (𝑠 + 28.87𝑠 + 1451) (𝑠 + 29.24𝑠 + 2572)
 

Investigating the open-loop behavior of the system and 

analyzing the poles and zeros leads that we are dealing 

with a stable and non-minimum phase system. In addition, 

an examination of the controllability and observability 

matrices indicates that all states are controllable and 

observable. 

3. Controller Design 

In this section, robust PI, and 𝐻∞ controllers are 

designed in various ways such as centralized, semi-

centralized, and decentralized for the system (5). 

 

3.1. Centralized Controller 

 

3.1.1 Centralized PI Controller 

First, a centralized PI controller for the system (5) is 

designed using Markov parameters. For this purpose, by 

calculating the CB and G(0) matrices of the system, 

Equations (6) and (7) are obtained: 

 𝐵 = [ 2 × 10−5
3 × 10−4

8
−2 × 10−5 0.35 × 10−4

]   

  ( 𝐵)− = 104 [
2.4138 −2.5862
1.3793 1.3793

] 

(6) 

𝐺(0) = 10−4 [
0.1982 0.3832
−0.1158 0.3015

]      

   (𝐺(0))− = 104 [
2.8946 −3.6796
1.1118 1.9036

] 
(7) 

By considering design tips and choosing proper 

coefficient 𝜀,  𝑃  𝑎𝑛𝑑  𝑃  examining the stability of PI 

controller coefficients, they will be in the form of (8) and 

(9). 

 𝑃 =  ( 𝐵)− × [
 𝑃 0
0  𝑃 

] 

= 104 [
2.4138 −2.5862
1.3793 1.3793

] × [
6 0
0 7

] 

= 105 [
1.4483 −1.8103
0.8276 0.9655

] 

(8) 

 𝑖 = 𝜀 × (G(0))
− 

 

= 0.2 × 104 [
2.8946 −3.6796
1.1118 1.9036

] 

= 103 [
5.7891 −7.3593
2.2236 3.8072

] 

(9) 

3.1.2. Centralized 𝐻∞ Controller 

In this section, a centralized robust 𝐻∞ controller will be 
designed with a sensitivity weighting function (10) and 
input weight function (11). The controller’s transfer 
function matrix is determined as (12). The block diagram 
of this method is presented in Fig.5. 

𝑊 = 0.1

[
 
 
 
 
0.066667 (𝑠 + 11.45)^3

(𝑠 + 0.2154)^3
0

0
0.066667 (𝑠 + 11.45)^3

(𝑠 + 0.2154)^3 ]
 
 
 
 

 (10) 

𝑊𝑢 = [10
−  0
0 10−  

] (11) 

 =

[
 
 
 
4.432𝑒11 𝑠 3 +  2.169𝑒15 𝑠  +⋯

𝑠 4 + 9959 𝑠 3 + 4.956𝑒07 𝑠  +⋯

−3.935𝑒11 𝑠 3 −  2.168𝑒15 𝑠  +⋯

𝑠 4 + 9959 𝑠 3 + 4.956𝑒07 𝑠  +⋯
3.863𝑒11 𝑠^13 +  1.751𝑒15 𝑠^12

𝑠 4 + 9959 𝑠 3 + 4.956𝑒07 𝑠  +⋯

4.447𝑒11 𝑠 3 +  2.293𝑒15 𝑠  +⋯

𝑠 4 + 9959 𝑠 3 + 4.956𝑒07 𝑠  +⋯]
 
 
 

 (12) 
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Fig.5.   Block diagram of centralized method 

 

3.2. Decentralized Controller 

 

3.2.1 PI first method 

      In this method, it has been tried to decouple the system. 

However, due to the absence of matrix D, the system is 

strictly proper, making its inverse is impossible. To 

address this issue, a fast pole is introduced in the inverse 

of the system. Consequently, the product of G and Ginv   

results in an almost decoupled system. 

To eliminate the steady-state error of the decoupled 

system, a simple integrator is employed along with an 

appropriate gain. This configuration ensures that the 

permanent error is effectively reduced to zero, as 

illustrated in the block diagram in Fig. 6. This approach 

simplifies the control design while maintaining robust 

performance in managing disturbances. 

 
Fig.6. Block diagram of the first decentralized PI 

method  

3.2.2 PI second method     
In this method, the static state feedback matrix is utilized 

to transform the system's transfer function into a 

decoupling form featuring four poles at the origin. This 

configuration allows for the implementation of a 

controller, as illustrated in the block diagram in Fig. 7, to 

achieve zero steady-state error and rapid response speed. 

In this method, 𝐵∗  and 𝐵̅ matrices are calculated 

according to Eq. (13) which leads the formulation of the 

controller as follows: 

 
 

𝐷𝑑 = [𝑠
 0
0 𝑠 

], 

𝐵∗ = 𝐷𝑑𝐺 = 10−3 [
0.55741 0.55741
−0.36915 0.49752

] 

or 

𝐵∗ = [
  𝐴𝐵
  𝐴𝐵

] = 10−3 [
0.55741 0.55741
−0.36915 0.49752

] , 

𝐵̅ = [
  𝐴

 𝐵

  𝐴
 𝐵
] = [

16.1368
−10.6867

   
1.3924
−0.9221

   
6.196
5.5303

   
1.3905
1.2411

   
9.896

−23.0562
   
−0.6122
−3.2979

   
−22.3328
5.1563

   
−2.7828
−0.319

] 

(13) 

Fig.7. Block diagram of the second decentralized PI 

method  
 

3.2.3.   Decentralized PID Controller 

In the decentralized PID controller design, a controller 

is designed for the G11 transfer function and a controller 

for the G22 transfer function separately using the tuning 

block PID. This method does not consider G12 for the first 

output and G21 for the second output. Simultaneously, the 

Gd transfer function is also the perturbation transfer 

function for the whole system. PID controllers’ 

coefficients (𝑃 +
𝐼

 
+

𝐷𝑁

 +
𝑁

𝑠

) of the first and second loops 

are the same and described in (14). The block diagram of 

this method is depicted in Fig.8. 

P = 16478731.7, I = 4596137.5, 

D = 13127303.4, N = 5463.7 

 

(14) 

Fig.8. Block diagram of decentralized PID method  

 

3.2.4.    Decentralized 𝐻∞ Controller 

   In this section, the 𝐻∞method is employed to design a 

robust controller, wherein the disturbance transfer 

function and the two transfer functions G12, and G21 are 

not included in the block diagram for the 𝐻∞  code. 

Instead, similar to section 3.2.1, the inverse transfer 

   

   

   

   ∫ ̇

t

  

 

  

 

t

  

 

  

 

∫ ̇

𝐺𝑖  

 
1

* ( ) ( )u B Bx t t

    

  

t  

  

 

∫ ̇

  

t

  

 

  

 

∫ ̇
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function Ginv is utilized for decoupling the system. 

Subsequently, two Single-Input Single-Output (SISO) 

controllers are designed for the G11, and G22 transfer 

functions using input weight functions as defined in 

equation (16). 𝐻∞ controllers of first and second loops are 

described in (17). Additionally, the block diagram of this 

method is depicted in Fig.9. 

𝑊 =
−0.1634𝑠  + 4617𝑠  +⋯

𝑠 4 + 188.6𝑠 3 + 3.397𝑒04𝑠   
 (15) 

𝑊𝑢 = 10−   (16) 

 =

[
 
 
 

5.21𝑒08𝑠 5 + 9.137𝑒12𝑠 4 +⋯

𝑠 6 + 3.778𝑒05𝑠 5 + 1.956𝑒10𝑠 4 +⋯
0

0
5.21𝑒08𝑠 5 + 9.137𝑒12𝑠 4 +⋯

𝑠 6 + 3.778𝑒05𝑠 5 + 1.956𝑒10𝑠 4 +⋯]
 
 
 

 (17) 

Fig.9. Block diagram of decentralized 𝐻∞ method 

3.3. Semi-Centralized (Sequential) Controller 

In this method, the first control loop is closed by 

considering subsystem G12 in the presence of the 

interference effect of subsystem G11, and then the second 

loop is closed by considering the first one. The pairing of 

inputs and outputs is similar to the decentralized method. 

That is, the second input should be used to control the first 

output, and the first input should be used to control the 

second output. In the next step, the second control loop 

must be closed, considering that the first loop is already 

closed. By considering the mentioned points and 

examining the stability of the system, the controllers are 

obtained as (18) and (19). 

P = -9145780.33, I = -28291844.5,  

D = -656903, N = 60598.27 
(18) 

P = 64285555.48, I = 437610052.9,  

D = 2098265.71, N = 133350.2 
(19) 

 

 

 
Fig.10. Block diagram of Sequential control 

 

4. Simulation Results 

As explained in Section 2, the understudying half-Car 

Suspension System is a stable and non-minimum phase 

system. The best performance of this system without 

control input against the disturbance caused by the 

passing of a car at a speed of 60 km/h through a 0.5 m 

long and 10 cm high obstacle is shown in Fig.3.  

In this section, the closed-loop system is analyzed 

using the PI, PID, and 𝐻∞MIMO controllers designed in 

the previous section. It should be noted that in all 

simulations, the control efforts (u) and its effect on the 

first (xb) and second (φ) outputs. 

 Fig.11 shows the closed-loop behavior of the system 

with the designed PI centralized controller. As can be seen, 

the interference effect of the movement over the bump on 

the outputs at the second 3s has been well rejected. 

However, it still disrupts the car passengers because the 

displacement is about millimeters. Also, in less than 20 

seconds, the controller can demonstrate its robustness 

against disturbance. 

 
Fig.11. Simulation results of PI Centralized control 

Fig.12 shows the output response with centralized 𝐻∞ 

control, due to the nature of this type of controller, it has 

been able to have better performance with more control 

effort.  

t
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Fig.12. Simulation results of centralized 𝐻∞ control 

The response to the external disturbance by the PI 

controllers, with the decoupling method using system 

inversion and with the state feedback method, is depicted 

in Fig.13 and 14, respectively. As can be seen, the first 

method has reduced the displacement by about µm due to 

using the decoupler transfer function in addition to the PI 

controller. On the other hand, the second method has 

given the best answer among the other PI controllers due 

to the use of two closed loops. Thus, the movement will 

not be felt practically because it is about nanometres. 

 
Fig.13. Simulation results of first decentralized PI 

control 

 
Fig.14. Simulation results of second decentralized PI 

control 

 

 The decentralized PID controller shown in Fig.15 

takes longer to reduce the displacement within the nm 

range due to the lack of an additional loop or decoupling 

matrix. 

 
Fig.15. Simulation results of decentralized PID control 

 

Figure 16 illustrates the response of the decentralized 𝐻∞ 

controller, which outperformed the other controllers in 

this study. As previously mentioned, the decentralized PI 

controller, utilizing the inverse method for decoupling, 

achieved a response of approximately μm with a simple 

1/s and a gain. Consequently, due to the enhanced 

capabilities of the 𝐻∞ method, superior performance was 

anticipated from this controller.  

 
Fig.16. Simulation results of decentralized 𝐻∞Controller 

 

The semi-centralized PID controller is depicted in Fig. 

17. By employing the sequential loop closing method, this 

controller exhibits marginally better performance than the 

decentralized PID controller, particularly in terms of 

displacement reduction, although it requires slightly more 

control effort. 

 
Fig.17. Simulation results of sequential PI Controller 
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4.1 Comparison 

In this part, the designed controllers are compared in 

terms of controller order, Required Power, and the 

displacement’s overshoot in the half-car suspension 

system. The brief results are shown in Table III. 

 Due to its simplicity, the centralized PI controller has the 

least order and control effort, and as a result, it has more 

displacement overshoot compared to others. Both 

decentralized and sequential PID controllers have low 

order. Moreover, both have reduced displacement 

overshoot in the order of µm. However, the sequential 

controller has reduced the displacement overshoot by 

about 15 micrometers by using power twice the 

decentralized control effort. While the first decentralized 

PI control has an acceptable controller order and control 

effort, it ranks third in terms of displacement overshoot 

reduction. The best performance among the controllers 

belongs to the second decentralized PI control, which has 

a little less control effort than the first decentralized PI 

method and reduces the displacement overshoot by about 

nanometers so that the passenger practically does not feel 

anything about the slips. Nevertheless, it should be noted 

that this method is a bit difficult to implement in hardware 

due to feedback from the system’s states.  

The order of the decentralized 𝐻∞ controller is twice that 

of the centralized one, and the control effort is a little more. 

On the other hand, they are not comparable in terms of 

displacement overshoot because decentralized is around 

Pico meters, which suggests that no vibration or 

movement is noticeable for passengers, while centralized 

is around millimeters. 

 

Table III. Comparison of the designed controllers 

Controller Displacement’s 
overshoot 

Required 
Power  

Order of 
controller  

Centralized PI 3 mm 0.8kN 2 
Centralized 𝐻∞ 1.5 mm 6kN 14 
Decentralized PI-1st 70 μm 8kN 11 
Decentralized PI- 2nd 25 nm 7.5kN 4 
Decentralized PID 17 μm 8kN 2 

Decentralized 𝐻∞  190 pm 8kN 26 
Sequential PID 1.5 μm 15kN 2 
 

As shown in Table III, the designed controllers in this 

paper have better performance than ref [6-8] because of 

their less displacement overshoot.  

Regarding Table III, the best controller in this paper is the 

decentralized 𝐻∞  method with acceptable control effort 

compared with previous research. 

It is while according to Table 1, the mass, inertia, and 

stiffness of the springs of our system are much higher than 

the previous research. Thus, it requires more force to 

control. 

Unscented Kalman Filter-based Super Twisting Control 

(UKF-STC) for a half-car suspension system is presented 

in [9], while an additional damper is considered. The 

comparison between this method and our proposed 

decentralized 𝐻∞ control, in Table IV, shows that our best 

controller’s Root Mean Square  Error (RMSE) is much 

less than [9] as one of the latest research on this subject. 

 

 

 

Table IV. Comparison between the proposed 

decentralized 𝐻∞ and [9] 
RMSE (× 10−  ) UKF-STC[9] Decentralized 𝐻∞ 

   28.701 8.4467 

  77.269 2.498 

 

5. Conclusion 

This paper has presented a comprehensive 

investigation into the design of MIMO controllers for the 

half-car suspension system to minimize displacement and 

oscillations. The nonlinear dynamical model was 

formulated, explicitly incorporating control forces and 

disturbance inputs from road surface irregularities. 

Centralized, decentralized, and semi-centralized control 

architectures were systematically developed using robust 

PI, PID, and 𝐻∞ techniques. The centralized controllers 

demonstrated effective disturbance rejection capabilities 

but suffered higher displacement than their decentralized 

counterparts. Among the decentralized schemes, the 

𝐻∞controller designed via inverse decoupling and mixed-

sensitivity optimization, achieves unparalleled vibration 

suppression performance and curtailing displacements to 

the Pico meter range amid external shocks. This 

outstanding attenuation stemmed from the controller's 

robust characteristics and appropriate selection of 

frequency-dependent weighting functions tailored to the 

disturbance dynamics. 

The semi-centralized PID controller, leveraging 

sequential loop closures, offered a practical balance 

between displacement mitigation and control effort 

expenditure. A comparative evaluation against previous 

works substantiated the superiority of the proposed 

control methodologies, particularly the decentralized 𝐻∞ 

strategy in improving passenger comfort under realistic 

driving scenarios. Despite the formidable computational 

complexity of certain designs, the meticulous treatment of 

system nonlinearities, input-output interactions, and 

exogenous disturbances contributed to their exceptional 

disturbance-nulling capabilities. 

While the current study restricted its focus to the half-

car model, future research endeavors could extend these 

advanced control formulations to comprehensive full-

vehicle dynamics. Incorporating additional degrees of 

freedom and practical implementation constraints would 

further enrich the real-world applicability of the 

developed schemes.  
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