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A B S T R A C T 
Real-world networks display complex topological characteristics that are absent in random graphs. This necessity for generating 

realistic artificial networks has led to the development of network models. Over the past few decades, network modeling has 

become a powerful approach for studying a variety of real-world network systems. Modeling complex networks enables the 

analysis of mechanisms such as disease outbreaks, information diffusion, transportation efficiency, social influence, and brain 

function. Among different network modeling paradigms, “temporal network models” capture the dynamic evolution of network 

topologies over time. A network model may be evaluated by different methods, but most of the evaluation methods for network 

models are designed for static models. Therefore, there exist a challenge in the evaluation of temporal network models. This paper 

proposes a novel deep learning-based approach to address this issue. Our method provides an effective evaluation framework for 

temporal network models and moreover, it facilitates anomaly detection in evolving networks. Evaluations on five datasets 

demonstrate that our approach outperforms alternative methods in terms of error rate 
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1. Introduction  

    Complex network structures are prevalent in a variety of real-world systems, including social networks, biological systems, and 

technological infrastructures [1]. In recent years, the study of these networks has gained significance as it offers valuable insights 

into the behavior and dynamics of complex systems [2]. Specifically, the analysis of complex networks has been instrumental in 

understanding diverse phenomena, such as disease transmission and information diffusion [4]. Network generation models serve as 

powerful tools for comprehending, analyzing, simulating, and designing complex systems represented as networks. These models 

are essential for unraveling the intricate structure and organization of interconnected systems, helping us understand how these 

systems operate. By modeling the dynamics of complex systems, we can simulate and analyze the spread of information, influence, 

or other phenomena throughout the network [5]. 

    On the other hand, evaluating the output of network generative models can be difficult because there is no clear objective measure 

of what constitutes a "good" output. Unlike discriminative models, where the output can be evaluated based on its accuracy in 

predicting a known label or class, generative models are designed to create new data similar to the training data. This means that any 

specific criteria do not necessarily constrain the output of a generative model and can be highly subjective. Furthermore, generative 

models often produce probabilistic outputs, meaning that the same input can result in different outputs each time the model is 

executed. This makes it difficult to compare the output of a generative model to a ground truth dataset, as there may be multiple valid 

outputs for a given input. As a result, evaluating the output of generative models often requires a combination of quantitative and 

qualitative analysis and human judgment. Generally, researchers have used three approaches to evaluate the output of network 

generative models: 

1) Statistical methods. The structural features of an artificial graph (such as the degree distribution, distribution of the clustering 

coefficient, and transitivity) and its real counterpart are compared[6-8].  
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2) Indirect assessment. A classification model is trained with real graphs and tested with generated graphs. If the artificial graph is 

similar to the target graph, the classification model gives a score of one; otherwise, a zero score is received [9].  

3) Quality-based approach. The common edges in the structure of the generated graph and the real graph are kept unchanged for 

model evaluation, and other links of the synthetic graph are changed randomly. In this case, if the statistical parameters of the 

synthetic graph (such as degree distribution, density, diameter, etc.) do not change compared to the real graph, the generating 

model has shown good performance [10]. 

    Although these methods are inherently designed for evaluating static graph generative models, some dynamic generative models 

have used them for model evaluation [11-15]. Dynamic networks change and therefore, evaluation methods designed for static 

networks may not be appropriate for dynamic networks. For example, metrics that measure the centrality of nodes in a static network 

may not be useful for understanding the dynamics of a network over time because it will not necessarily have a fixed value.  

   Temporal networks, characterized by their evolving connections over time, introduce a layer of complexity beyond traditional static 

network models. Predicting node status within such dynamic contexts necessitates a nuanced understanding of how graph similarity, 

often explored in static settings, translates to temporal dynamics. Our research addresses this critical gap by elucidating the 

interconnectedness between graph similarity metrics and the evolving states of nodes in temporal networks. By leveraging insights 

from graph similarity learning, we discern patterns in temporal network dynamics that influence node status predictions. Our 

approach acknowledges the dynamic nature of real-world systems, where nodes interact and evolve over time, rendering traditional 

static analyses insufficient for capturing the full spectrum of network behaviors. Furthermore, our work recognizes the limitations of 

existing evaluation methods designed primarily for static graph generative models when applied to dynamic network settings. 

   In this paper, we consider the challenge of evaluating dynamic complex network generative models' output using different graph 

embedding mechanisms, recurrent neural networks (RNN), and fully connected layers. In other words, given the history of a dynamic 

network and a new snapshot, the proposed model called DGSP-GCN (Dynamic Graph Similarity Prediction based on Graph 

Convolutional Network) predicts how likely the hypothetical snapshot will be the future of the same temporal network. While it is 

true that DGSP-GCN leverages existing embedding methods, its contribution lies in the novel synthesis, customization, and 

application of these techniques within a unified framework tailored for dynamic graph node-level similarity prediction. Our 

experiments illustrate that the proposed model outperforms the baselines. The main contributions of this paper are as follows: 

1) Using the attention mechanism in the representation of the node level to improve the embedding process; 

2) Presenting a new automatic method based on deep learning to ameliorate the analysis and output evaluation of dynamic 

complex network generative models as well as anomaly detection in such structures. 

   The rest of this paper is organized as follows: Section 2 reviews the state-of-the-art graph similarity prediction models. In Section 

3, the problem statement is presented. Section 4 illustrates our proposed method. Section 5 shows the experimental evaluations. 

Finally, section 6 concludes and explains the future works.   

2. Literature review 

  In the vast realm of data analysis, understanding the unique attributes and relationships within complex structures has appeared as 

a paramount challenge. Within this context, graph similarity learning has emerged as an intriguing avenue, enabling researchers to 

uncover hidden correlations, discover underlying patterns, and extract valuable insights from interconnected data. The primary goal 

of graph similarity learning is to develop effective techniques that capture the inherent similarities and dissimilarities between graphs 

[16]. We can discern their structural, topological, and semantic characteristics by measuring the similarity between graphs. This 

holistic understanding allows us to categorize graphs more accurately, identify anomalies, and better understand their underlying 

dynamics [17]. For instance, in social network analysis, graph similarity learning can help identify communities or clusters of 

individuals with similar social connections. Moreover, graph similarity learning has applications in recommendation systems, which 

can be used to identify similar users or items based on their interconnected relations. 

    In summary, graph similarity learning is a vital tool in data analysis that allows us to unlock hidden insights, understand complex 

structures, and make informed decisions in various domains.  Our work aims to reconcile the realms of graph similarity learning with 

the intricacies of temporal network dynamics, thereby shedding light on evolving system states and facilitating predictive insights 

into node behaviors. Generally, graph similarity learning approaches are divided into categories, including graph kernels, graph 

embedding methods, and graph neural networks (GNN). We will examine each one below. 

2.1. Methods based on graph kernels 

   A graph kernel is a function that measures the similarity between two graphs by mapping them into a high-dimensional feature 

space. Graph kernels are commonly used in machine-learning tasks involving graph-structured data [18]. The basic idea behind graph 

kernels is to define a function that maps each graph into a vector of features that capture its structural properties. The similarity 

between the two graphs can then be computed as the inner product of their feature vectors in the high-dimensional space [19]. 

   There are many different types of graph kernels, each with its strengths and weaknesses. Some popular graph kernels include the 

random walk kernel [20], the subtree kernel [21], and the neighborhood hash kernel [22]. The choice of kernel depends on the specific 

application and the properties of the graphs being analyzed. While graph kernel methods have many advantages, they also face 

several challenges that must be carefully considered when applying them to real-world problems [16]. Here are some of the main 

challenges:  

• Computational Complexity: Graph kernel methods can be computationally expensive, especially for large graphs. Since 

these methods involve comparing graphs based on structural or topological properties, the computations can become time-

consuming and resource-intensive as the size of the graphs increases. This can limit their scalability and efficiency in 

handling large-scale graph datasets. 
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• Kernel Choosing: There are many different types of graph kernels, each with its own strengths and weaknesses. Choosing 

the right kernel for a particular problem can be challenging, and there is often no clear best choice.  

• Sensitivity to Graph Representations: Graph kernel methods heavily rely on the representations of graphs, such as node or 

edge labels, that are provided as input. Small changes or variations in these representations may lead to significantly different 

kernel values, affecting the similarity measures between graphs. 

 

2.2. Graph embedding methods  

    Graph embedding methods for similarity are techniques used to represent graphs as low-dimensional vectors, which can be used 

to measure similarity between graphs. These methods aim to capture the structural and semantic information of the graph in the 

embedding space, such that similar graphs are mapped to nearby points in the embedding space. There are various graph embedding 

methods for similarity, including node and graph embedding methods. In the case of node embedding, the aim is a representation of 

each node to a vector by some methods like node2vec [23, 24], which can be aggregated to obtain an embedding for the entire graph 

[25]. Graph embedding methods aim to directly learn the representation of the entire graph by considering the graph structure like 

[26-28]. However, there are several challenges associated with graph embedding methods, including [17]: 

• Heterogeneity: Graphs can be heterogeneous, containing different nodes and edges. Embedding methods need to handle this 

heterogeneity and capture the relationships between different types of nodes and edges. 

• Structure-oriented: Although structural features such as node degree distribution, clustering coefficient distribution, number 

of triangles, network diameter, etc., are used to generate vectors at the node and graph levels, the node and edge level 

features are not considered for embedding.  

• Loss of Graph Structure Interpretability: Embedding methods aim to represent graphs in low-dimensional vector spaces. 

While this enables numerical comparisons and similarity metrics, it can lead to a loss of interpretability in terms of the 

original graph structure. The transformed representations may not directly reveal the inherent graph properties and 

relationships, making comprehending the reasons behind similarity or dissimilarity scores challenging. 

 

2.3. GNN-based methods 

    GNN methods are a class of machine learning techniques that have emerged as powerful tools for graph similarity prediction. By 

leveraging their ability to capture and learn from complex graph structures, GNNs offer a promising approach for comparing the 

similarity of different graphs. Through a series of iterative aggregation and transformation steps, GNNs can effectively encode the 

inherent structural properties of graphs into low-dimensional representations, commonly referred to as node or graph embeddings 

[29-31]. Not only do these learned embeddings encapsulate the topological relationships and attributes of individual nodes, but they 

also capture the global structural patterns and dependencies present in the graph as a whole. By harnessing the expressive power of 

GNNs, graph similarity prediction can benefit from the rich representations learned by the network, facilitating more accurate and 

nuanced comparisons between complex and heterogeneous graph structures in diverse domains.  

    One popular approach for graph similarity prediction using GNNs is to use Siamese networks [32-35], which consist of two 

identical GNNs that take in two different graphs as input and output a similarity score. The two GNNs share the same weights, 

allowing them to learn a common representation of the graphs. Another approach is to use a contrastive loss function, which 

encourages the GNN to learn representations that are close together for similar graphs and far apart for dissimilar graphs [36]. This 

can be combined with a Siamese network architecture to learn a similarity function. Other GNN-based approaches for graph similarity 

prediction include using attention mechanisms to focus on important substructures within the graphs [37]. While Graph Neural 

Network (GNN) based methods have shown promising results in graph similarity learning, they also have a few disadvantages. Here 

are some of them [17]:   

• Computational Complexity: GNNs can be computationally expensive, especially for large graphs with a high number of 

nodes and edges. The complexity increases as the graphs' size and complexity grow, making it challenging to scale GNN-

based methods to large-scale graph similarity learning tasks. 

• Interpretability and Explainability:  The complex nature of the GNN architecture makes it challenging to understand how 

and why certain patterns are learned and used for similarity comparisons. Interpreting the decisions made by GNN-based 

models can be difficult. 

3. Proposed method  

3.1. Problem statement 

    With the help of synthesized networks, we can represent complex systems through graph structure. The node's connections in real 

networks are a specific and meaningful pattern. Therefore, the corresponding synthesized network should match the real network. 

Put differently, the closer the synthetic network is to the target network, the more precise the outcomes of different tests conducted 

on the synthetic networks will be. 

    If 𝔾 is a dynamic complex network and its snapshots contain {𝐺1, 𝐺2,…, 𝐺𝑇}, then the problem is to predict the similarity of a 

network 𝐺𝑟  (perhaps a synthesized graph) with 𝐺𝑇+1 of 𝔾. To formalize this prediction task, Eq. (1) introduces the inputs and output 

of the problem, where  f  is a function that takes in the sequence {𝐺1, 𝐺2,…, 𝐺𝑇} and 𝐺𝑟  to compute the similarity and S(𝐺𝑇+1,𝐺𝑟) is 

the similarity between 𝐺𝑇+1and 𝐺𝑟 . We assume that the considered networks are static graph-temporal signals. This implies that the 

arrangement of the network remains constant throughout time, but the attributes of the network nodes alter over time. 
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𝑓({𝐺1, 𝐺2, … , 𝐺𝑇}, 𝐺𝑟)
= 𝑆(𝐺𝑇+1, 𝐺𝑟)                                                                                                                                                                                                                        (1) 

 

    One of the paramount applications of predicting the similarity between evolving network states lies in anomaly detection within 

dynamic complex networks. Sudden deviations in the similarity score of 𝑓({𝐺1, 𝐺2, … , 𝐺𝑇}, 𝐺𝑇+1) might indicate potential anomalies, 

such as malicious activities or unexpected patterns. Consequently, leveraging this similarity-based approach offers a proactive 

mechanism to identify and mitigate threats or disruptions in dynamic network environments. Beyond anomaly detection, the 

predictive framework holds pivotal significance in evaluating the efficacy and performance of dynamic generative models. 

Generative models that emulate and reproduce complex networks' structural and temporal characteristics necessitate rigorous 

evaluation metrics. Researchers and practitioners can quantitatively assess dynamic generative models' fidelity, robustness, and 

generalization capabilities by juxtaposing the predicted similarity scores with ground truth or benchmark snapshots. Such evaluations 

ensure that generative models capture essential temporal dynamics, structural nuances, and emergent behaviors inherent to real-world 

complex networks, thereby fostering advancements in network synthesis, simulation, and reconstruction methodologies.  

 

 
 

 
Fig. 1. The process of preparing datasets with the help of the noise injection approach to train the proposed model.  

 

3.2. Noise injection approach 

    Referring to Eq. (1), when 𝐺𝑟  aligns perfectly with 𝐺𝑇+1, the resultant similarity metric will be unity (i.e., S (𝐺𝑇+1,𝐺𝑟) = 1). 

Conversely, any divergence or alteration in 𝐺𝑟  leads to a proportional decrement in the similarity value. To illustrate, if 𝐺𝑟  undergoes 

a 20% modification, the similarity is quantified as S (𝐺𝑇+1,𝐺𝑟) = 0.8. Motivated by this foundational understanding, we harness the 

concept of noise injection to curate a comprehensive training dataset for our deep learning-based model, denoted as f. This research's 

datasets encompass distinct temporal snapshots organized into various buckets. We systematically introduce varied noise levels into 

𝐺𝑟  within these buckets, representing the terminal snapshot. Subsequently, we delineate the label for each bucket predicated on the 

computed similarity distance, thereby facilitating a robust training paradigm for our predictive model. Fig. 1 and Algorithm 1 

illustrate the noise injection approach. First of all, we assign a Y = 1 similarity label to each of the buckets of datasets, which shows 
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the degree of complete similarity of the last snapshot with its real state. Then, we randomly select several buckets. Next, some nodes 

are randomly selected, like nodes 3, 4, and 5 in Fig.1, and to inject a logical noise, a random value between the minimum and 

maximum value that the node has in the entire dataset is replaced by the last feature of the node. Finally, the bucket similarity label 

is calculated using Eq. (2). 

 

𝑌𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] =  1  - 

   
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
                                                                                                                                                                                                  (2) 

3.3. DGSP-GCN method 

    Since the datasets used in this research are dynamic complex networks, we utilized GNN and recurrent neural network layers. 

GNN layers are used to propagate information between nodes in a graph, allowing the network to learn features that capture the local 

and global structure of the graph. This is achieved by aggregating information from neighboring nodes and updating the node 

representations based on this information. Fig. 2 illustrates the architecture of our proposed model. In the first stage, by the use of 

the GCN layer, we represent the nodes and edges of each snapshot to 32-dimensional vectors; next, we pass these vectors to a 

recurrent neural network layer to capture the relationships between the sequence elements over time. Following this, in the third 

stage, we use a mean pooling layer due to forecasting at the graph level. Eventually, with the help of a MLP, we predict the similarity 

rate of the last snapshot,𝐺𝑟 , with the future of the snapshots from 𝐺1 to 𝐺𝑇. Actually, the snapshot of 𝐺𝑟  is equivalent to the 𝐺𝑇+1 of 

the input bucket, which has been injected with noise with a probability of 50%. Also, the similarity prediction process by the proposed 

method can be seen in Algorithm 2.  

    However, several kinds of edge and node advanced embedding architectures exist. After our experiments, we will use one of them 

as the first and second phases of DGSP-GCN architecture because they have been tested for different datasets and have already 

shown good performance. They include:  

1) GConvGRU [38]. It consists of multiple layers of GConvGRU cells. Each cell has two main components: a GCN layer and the 

Gated Recurrent Unit (GRU) layer.  

2) GConvLSTM [38]. It combines the GCN and LSTM networks to capture both spatial and temporal dependencies in the graph 

data.  

3) TGCN [39]. Its architecture comprises several layers, such as GCN, GRU, and temporal pooling. 

4) AGCRN [40]. It consists of two main components, including gated convolutional layers and recurrent units, to effectively capture 

spatial and temporal dependencies in the data.  

5) A3TGCN [41]. It is a powerful architecture that combines TGCN and attention mechanisms for spatiotemporal forecasting tasks.  

    Although we utilize existing embedding architectures, it is crucial to note that our approach involves substantial customization 

and adaptation to suit the requirements of dynamic graph similarity prediction. We have meticulously tailored these methods to 

accommodate the temporal dynamics inherent in our dataset, thereby enhancing their efficacy in capturing evolving graph structures 

over time. 

 

 
 

Fig. 2. The architecture of DGSP-GCN model     
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3.4. The performance measures   

    Evaluating machine learning models is crucial in assessing their performance and effectiveness. The choice of appropriate 

evaluation metrics holds immense importance due to objective assessment. In other words, evaluation metrics provide an objective 

and standardized way of measuring and comparing model performance. To evaluate the performance of our regression model, it is 

common to use Eq. (3), Eq. (4), and Eq. (5), where N is the number of samples, Y is the real label, and 𝐘̂ is the label predicted by the 

model.  

 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸)

=  
1

𝑁
 ∑ (𝑌

𝑁

𝑖=1

−  𝑌̂)
2

                                                                                                                                                                                                                        (3) 

 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸)

=  
1

𝑁
 ∑ |(𝑌

𝑁

𝑖=1

−  𝑌̂)|                                                                                                                                                                                              (4) 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸)

=  √
1

𝑁
 ∑ (𝑌 −  𝑌̂)2

𝑁

𝑖=1
                                                                                                                                                                                  (5) 

    

    Giving higher weights to larger errors is one of the advantages of MSE, thereby indicating the importance of reducing significant 

deviations. Nevertheless, one disadvantage of it is that it squares the errors, which can lead to an amplification of the impact of 

outliers. On the other hand, although MAE is less sensitive to outliers and provides a robust measure of error, it may not fully capture 

the relative importance of different errors. However, RMSE combines the benefits of both MSE and MAE by calculating the square 

root of the average squared difference between predicted and actual values. Therefore, with the help of these measures, we can 

evaluate the performance of the proposed model in different aspects.  

4. Experiments  

4.1. Evaluation methods  

In order to comprehensively assess the performance of our model, we conducted a thorough comparative analysis against a set of 

baselines. This evaluation methodology allows us to gauge the effectiveness and superiority of our proposed approach in tackling 

the given problem. However, previous methods in graph comparison are limited to static graphs, while the datasets used in this 

research are temporal. That is why we have presented two baselines, including time series regression and random methods, to 

compare the performance of the proposed model. In the case of the random method, a random number between zero and one is 

generated as 𝑌̂ for each sample of the test dataset. Although the random method's performance is not impressive, it does assure us 

that our proposed model for similarity prediction is not performing worse than the least effective baseline. Another baseline idea we 

presented is the use of time series regression. Fig. 3 and Algorithm 3 describe the process of similarity prediction. In this case, a 

regression model is trained for each node in every sample of the test dataset. The model gets the features of the node from snapshots 
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1 to T-1 to predict its feature for the next snapshot. In other words, this model predicts the last feature for each node after receiving 

n-1 previous features of the node. Eventually, the amount of 𝑌̂𝐵𝑢𝑐𝑘𝑒𝑡[𝑖] calculate based on Eq. (6). 

 

𝑌̂𝐵𝑢𝑐𝑘𝑒𝑡[𝑖]

=  
1

𝑚
 ∑ 1

𝑚

𝑗=1

−  |𝑌𝑗

−  𝑌̂𝑗|                                                                                                                                                                                                                                                      (6) 

 

Where m is the number of nodes in each sample, 𝑌j is the real label of the node of the last snapshot and 𝑌̂j is the predicted label by 

the time series regression model. The absolute difference between these two values represents the amount of noise injected into the 

last feature of each bucket node. 

 

 
Fig. 3. The process of time series regression for prediction of bucket's label for each sample of the test dataset. 

 

 
4.2. Data description   

        This section emphasizes a robust and comprehensive data description to provide a solid foundation for our research findings 

and analysis. Data plays a crucial role in shaping the outcomes of any study, and by thoroughly understanding the datasets used, we 

can ensure the validity and reliability of our results. Therefore, we use five real-world available datasets, which are a kind of static 

graph-temporal signals. They include the following: 

1) WikiMath [42]. This is a collection of important math articles from Wikipedia, presented as a graph where each page is a vertex 

and links between them are edges. The weight of each edge represents the number of links from the source page to the target page. 

The target is the number of daily visits to these pages.  

2) Chickenpox [43]. This is a collection of information about chickenpox cases in Hungary. The data includes the number of 

chickenpox cases each week, where each city is a vertex and the road between them an edge.  

3) PedalMe [44]. This is a dataset of Bicycle deliveries in London. The data is represented as a graph, where different areas are the 

vertices, and the connections between them are the edges. The vertex features show the number of deliveries requested each week.  



Model Evaluation and Anomaly Detection in Temporal Complex Networks using Deep Learning Methods 

165 

4) MetraLa [45]. This dataset predicts traffic patterns in the Los Angeles Metropolitan area. The data was gathered from 207 loop 

detectors on highways throughout Los Angeles County.  

5) MontevideoBus [46]. This dataset contains information about the number of passengers who boarded buses at various stops in 

Montevideo city. The weight of these connections represents the distance between stops.  

These datasets are summarized in Table 1. To train and evaluate our proposed model for each dataset, we use the cross-validation 

method with K=3.  

 

Table 1: The used datasets in our experiments.  

Dataset #Nodes #Edges #Snapshots Frequently 

WikiMath 1068 27079 731 Daily 

Chickenpox 20 102 520 Weekly 

PedalMe 15 225 30 Weekly 

MetraLa 207 1722 3224 5-Minutes 

MontevideoBus 678 690 734 1-Hours 

 

4.3. Experimental result analysis   

    The hyper-parameters of our proposed model include epoch, number of snapshots per bucket, node embedding dimensions, and 

learning rate. The experiment's hyper-parameters were manually set to 30, 10, 32, and 0.01 for all datasets based on experiments, 

respectively. Each embedding recurrent layer in the architectures of the proposed model has its merits and demerits, and the best 

layer to use will depend on our experiments. That is why, according to the results of experiments in Table 2 and Figures 4, 5, 6, 7, 

and 8, the performance of the proposed model in the same condition for the A3TGCN layer is almost better than others because of 

an attention mechanism layer. This attention-driven strategy enables A3TGNC to capture the intricate relationships and importance 

of neighboring nodes, resulting in highly informative and context-aware embeddings. At its core, the attention mechanism allows 

the model to dynamically assign weights or importance scores to each neighbor during the aggregation process, considering both 

local and global information. By adaptively attending to the most relevant nodes, A3TGNC effectively focuses its attention on the 

crucial aspects of the graph, emphasizing nodes that contribute significantly to the target node's representation. This attention-based 

approach offers several significant advantages: firstly, it enables the model to assign higher weights to influential neighbors, thereby 

capturing the influence and impact of key nodes in the embedding process. Secondly, it allows A3TGNC to prioritize relevant 

structural patterns and dependencies, enhancing its ability to capture complex graph dynamics and characteristics. Thirdly, the 

attention mechanism enables the model to handle varying degrees of node importance, such as nodes with high centrality or rare but 

impactful nodes, enhancing the robustness and adaptability of the embedding generation process.  

    The bar graphs from Figure 4 to Figure 8 show the error rate of the proposed model and baselines based on the results of 

experiments in Table 2. Let's discuss Fig. 4 as an example of our experiments; the supplied bar chart denotes the percentage of error 

rates of the proposed model and other baselines based on MSE, MAE, and RMSE performance measures. As an overall trend, the 

lowest error rates can be observed for the proposed model with the A3TGCN layer. In contrast, these figures are higher for time 

series regression and especially for the random method than the others. To begin with, in MSE, the error rate for the proposed model 

with embedding layer including GConvGRU, GConvLSTM, TGCN, AGCRN, and A3TGCN is on an average of well over 10%. 

Also, the average MAE of the proposed model with different embedding architectures is almost 28%, and for RMSE, it is almost 

34%. In the case of time series regression, these figures' percentages are 7%, 7%, and 8% higher than their counterparts in the 

proposed model with the A3TGCN embedding layer, respectively. It can also be seen that there is an almost similar trend for the 

other baseline. 

    Finally, after determining the optimal parameters and choosing an architecture for embedding, the final results of the proposed 

method can be seen in Table 3 with three dense layers, including 32, 64, and 1 neurons, respectively. We have used PyTorch [47] 

and PyTorch Geometric Temporal [48] libraries to implement the proposed model.  

 

 

 

 

 

 

Table 2: The prediction results of the proposed model and other baselines 

Dataset Method Recurrent 

layer 

MSE MAE RMSE 
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Wiki Math 

 

 

DGSP-GCN Method 

GConvGRU 0.1367 0.3264 0.3598 

GConvLSTM 0.1262 0.3091 0.3579 

TGCN 0.1117 0.2800 0.3419 

AGCRN 0.1220 0.2843 0.3490 

A3TGCN 0.1012 0.2624 0.3224 

Random Method - 0.1991 0.3676 0.4460 

Time series regression 

Method 

- 0.1724 0.3523 0.4139 

 

 

 

Chickenpox 

 

 

 

DGSP-GCN Method 

GConvGRU 0.1162 0.3015 0.3442 

GConvLSTM 0.1065 0.2683 0.3307 

TGCN 0.1067 0.2697 0.3173 

AGCRN 0.1043 0.2351 0.3011 

A3TGCN 0.0834 0.1797 0.2648 

Random Method - 0.2136 0.3789 0.4620 

Time series regression 

Method 

- 0.1489 0.3273 0.3858 

 

 

PedalMe 

 

 

 

DGSP-GCN Method 

GConvGRU 0.0904 0.3120 0.3016 

GConvLSTM 0.0889 0.2683 0.3021 

TGCN 0.1216 0.2572 0.3489 

AGCRN 0.0977 0.2441 0.3125 

A3TGCN 0.0768 0.1750 0.2770 

Random Method - 0.1871 0.3753 0.4319 

Time series regression 

Method 

- 0.1420 0.3539 0.3736 

 

 

MontevideoBus 

 

 

 

DGSP-GCN Method 

GConvGRU 0.1216 0.3039 0.3470 

GConvLSTM 0.0934 0.2595 0.2995 

TGCN 0.0900 0.2596 0.3006 

AGCRN 0.1163 0.2835 0.3341 

A3TGCN 0.0706 0.2038 0.2717 

Random Method - 0.1950 0.3685 0.4412 

Time series regression 

Method 

- 0.1618 0.3284 0.4015 

 

 

 

MetraLa 

 

 

 

DGSP-GCN Method 

GConvGRU 0.0456 0.1519 0.2056 

GConvLSTM 0.0668 0.1755 0.2215 

TGCN 0.0477 0.1592 0.1845 

AGCRN 0.0936 0.2787 0.3150 

A3TGCN 0.0549 0.1803 0.2343 

Random Method - 0.1859 0.3625 0.4312 

Time series regression 

Method 

- 0.1536 0.3164 0.3919 

 

 

 

Table 3: The errors of the DGSP-GCN model with the A3TGCN embedding layer 

Dataset MSE MAE RMSE 

Wiki Math 0.0983 0.2289 0.3176 
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Chickenpox 0.0502 0.1117 0.2229 

PedalMe 0.0629 0.1889 0.2416 

MontevideoBus 0.0607 0.1907 0.2463 

MetraLa 0.0508 0.1705 0.2253 

 

 
Fig. 4. The error rates of models for the Wikimath dataset. 

 

 
Fig. 5. The error rates of models for the Chickenpox dataset. 

 

 
Fig. 6. The error rates of models for the PedalMe dataset. 
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Fig. 7. The error rates of models for the MetraLa dataset. 

 

 
Fig. 8. The error rates of models for the MontevideoBus dataset. 

 

5. Conclusion  

    There are many different kinds of challenges in complex network modeling based on machine learning, and solving them improves 

the performance of network generative models, especially their dynamic counterparts. An automatic evaluation approach based on 

deep learning is one of the most effective ways to improve the quality of artificially produced networks. Dynamic generative models 

have used statistical approaches of static modeling methods, which is not optimal due to time dependency in dynamic graph-based 

structures. Therefore, this paper proposes a deep learning-based model to solve the challenge of evaluating dynamic generative 

models. The proposed model contains several phases, including node and edge embedding. In the case of embedding, we have tested 

several embedding architectures like GConvGRU, GConvLSTM, TGCN, AGCRN, and A3TGCN. These architectures contain GCN 

and recurrent neural network layers.  

    On the one hand, the GCN is used to capture the graph's topological structure to obtain the spatial dependence; on the other hand, 

the recurrent neural network layer is used to capture the dynamic change of node attribute to obtain the temporal dependence. 

According to the conducted tests, the A3TGCN performs almost better than other embedding layers due to having an attention 

mechanism layer. Besides evaluating dynamic generative models, the proposed model can also be used in anomaly detection. Our 

model achieved the best prediction results under different horizons when evaluated on five real-world datasets and compared with 

the random and time series regression baselines. In other words, according to Table 3, the average error rate of the proposed model 

based on MSE, MAE, and RMSE performance measures with the A3TGCN embedding layer for the datasets presented in Table 1 

are equal to 0.0645, 0.1781, and 0.2507, respectively. In contrast, these averages for the time series regression model based on Table 

2 each are equal to 0.1557, 0.3356, and 0.3933. Also, these values for another baseline, the random model, are separately 0.1961, 

0.3623, and 0.4424.   

    In light of the findings presented in this study, there are several promising avenues for future research. It would be valuable to 

improve the proposed model to apply to larger and different samples like dynamic graph-static and dynamic graph-temporal signals. 

This would provide further insights into the generalizability and sustainability of the observed outcomes. Last but not least, in this 

research, if 𝐺𝑟  is a complex network, and {𝐺1, 𝐺2,…, 𝐺𝑇} is a set of snapshots from time step 1 to T. Then, the proposed model 

predicts the degree of similarity of 𝐺𝑟  with 𝐺𝑇+𝑖  in such a way that i = 1. Therefore, improving the proposed model to predict the 

degree of similarity per i ≥ 1 can be an effective and practical strategy.  
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