Differential Modulation of Biomass Productivity and Fatty Acid Composition in Dunaliella salina by Salinity and Nutrient Stress | ||
| Plant, Algae, and Environment | ||
| مقاله 6، دوره 9، شماره 3، آذر 2025، صفحه 61-81 اصل مقاله (906.71 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.48308/pae.2025.241096.1120 | ||
| نویسندگان | ||
| Mohammad Rozitalab؛ Gilan Attaran Fariman* ؛ Hasan Zadabbas Shahabadi | ||
| Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran | ||
| چکیده | ||
| Dunaliella salina, a microalga renowned for its production of bioactive compounds, holds significant potential for biofuel generation. This study investigated the interactive effects of salinity and nutrient availability on the growth kinetics, biomass yield, total lipid content, and fatty acid composition of a D. salina strain isolated from the southern coast of Iran. The microalga was cultivated under three distinct salinity levels (35, 70, and 105 g/L), each supplemented with varying concentrations of nitrate (100%, 50%, 25%) and glucose (1, 2, and 3 g/L). The highest biomass yield (1449 mg/L) was achieved at the lowest salinity (35 g/L) when supplemented with 3 g/L glucose. Notably, the average biomass production across various nutrient treatments at 70 g/L salinity surpassed that observed at the other salinities. While alterations in nutrient concentrations did not significantly impact the overall lipid content (P ≥ 0.05), the highest lipid accumulation was observed at the highest salinity (105 g/L). However, the lipid productivity at 35 g/L with 3 g/L glucose was superior due to the substantially higher biomass yield. Saturated Fatty Acids (SFAs) dominated the fatty acid profiles, ranging from 41% to 73% of the total fatty acids, whereas Polyunsaturated Fatty Acids (PUFAs) varied between 2% and 40%. Palmitic acid (C16:0) consistently represented the most abundant individual fatty acid (13-44%) across all treatments. The maximum accumulation of SFAs was observed at 70 g/L salinity. The findings of this study demonstrate the significant influence of salinity and nutrient regimes on the biomass and lipid characteristics of the Iranian D. salina isolate, suggesting its potential as a promising feedstock for biofuel production. | ||
| کلیدواژهها | ||
| Biomass Production؛ Biofuel Feedstock؛ Fatty acids؛ Salinity Stress؛ Nutrients؛ Glucose Supplementation | ||
| مراجع | ||
|
Abu-Rezq, T.S., Al-Hooti, S. and Jacob, D.A., 2010. Optimum culture conditions required for the locally isolated Dunaliella salina. Journal of Algal Biomass Utilization, 1(2), pp.12-19.
Attaran-Fariman, G., 2014. Identification of native microalgae of the Oman Sea and their evaluation as live food in aquaculture. Final report of Iranian Fisheries Institute, 166pp.
Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I. and Zamir, A., 2002. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiology, 129(3), pp.1320-1329. DOI: https://doi.org/10.1104/pp.001909.
Bhola, V., Swalaha, F., Ranjith Kumar, R., Singh, M. and Bux, F., 2014. Overview of the potential of microalgae for CO₂ sequestration. International Journal of Environmental Science and Technology, 11, pp.2103-2118.
Bligh, E.G. and Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), pp.911-917. DOI: https://doi.org/10.1139/o59-099.
Borowitzka LJ, Kessly DS, Brown AD. 1977. The salt relation of Dunaliella. Further observation on glycerol production and its regulation. Archive for Microbiology, 13: 131–38. DOI: https://doi.org/10.1007/BF00428592.
Borowitzka, M.A. and Siva, C.J., 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5), pp.567-590. DOI: https://doi.org/10.1007/BF00428592.
Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S. and Cadoret, J.P., 2012. Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnology and Bioengineering, 109(11), pp.2737-2745. DOI: https://doi.org/10.1002/bit.24560.
Can, S.S., Cirik, S., Koru, E., Turan, G., Tekoğul, H. and Subakan, T., 2016. Effects of salinity, light and nitrogen concentration on growth and lipid accumulation of the green algae Dunaliella salina. Fresenius Environmental Bulletin, 25(5), pp.1437-1447.
Chandra, R., Rohit, M.V., Swamy, Y.V. and Mohan, S.V., 2014. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology, 165, pp.279-287. DOI: https://doi.org/10.1016/j.biortech.2014.02.102.
Cheirsilp, B. and Torpee, S., 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, pp.510-516. DOI: https://doi.org/10.1016/j.biortech.2012.01.125.
Chen, H., Jiang, J.G. and Wu, G.H., 2009. Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. Journal of Agricultural and Food Chemistry, 57(14), pp.6178-6182 DOI: https://doi.org/10.1021/jf900447r.
Chen, M., Tang, H., Ma, H., Holland, T.C., Ng, K.S. and Salley, S.O., 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(7), pp.1649-1655. DOI: https://doi.org/10.1016/j.biortech.2010.09.062
Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology Advances, 25(3), pp.294-306. DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001.
Chu, W.L., 2012. Biotechnological applications of microalgae. International e-Journal of Science, Medicine and Education, 6(1), pp. S24-S37.
Deora, P.S., Verma, Y., Muhal, R.A., Goswami, C. and Singh, T., 2022. Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings, 48, pp.1178-1184. DOI: https://doi.org/10.1016/j.matpr.2021.08.227.
Deyab, M.A., El-Sadany, A., Ghazal, M.A. and El-Adl, M., 2021. Nitrogen deficiency maximizes the production and accumulation of β-carotene via induction of different macromolecule derivatives in Dunaliella salina (Dunal) Teodoresco. Egyptian Journal of Botany, 61(2), pp.453-466. doi: 10.21608/ejbo.2021.40359.1542.
Fried, A., Tietz, A., Ben-Amotz, A. and Eichenberger, W., 1982. Lipid composition of the halotolerant alga, Dunaliella salina. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 713(2), pp.419-426. DOI: https://doi.org/10.1016/0005-2760(82)90261-2.
Gao, Y., Yang, M. and Wang, C., 2013. Nutrient deprivation enhances lipid content in marine microalgae. Bioresource Technology, 147, pp.484-491. DOI: https://doi.org/10.1016/j.biortech.2013.08.066
Gordillo, F.J., Goutx, M., Figueroa, F.L. and Niell, F.X., 1998. Effects of light intensity, CO₂ and nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycology, 10(2), pp.135-144. DOI: https://doi.org/10.1023/A:1008067022973.
Gu, N., Lin, Q., Li, G., Tan, Y., Huang, L. and Lin, J., 2012. Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Engineering in Life Sciences, 12(6), pp.631-637. DOI: https://doi.org/10.1002/elsc.201100204
Guillard, R.R. and Ryther, J.H., 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2), pp.229-239. DOI: https://doi.org/10.1139/m62-029
Heredia-Arroyo, T., Wei, W. and Hu, B., 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotechnology, 162(7), pp.1978-1995. DOI: https://doi.org/10.1007/s12010-010-8974-4
Heredia-Arroyo, T., Wei, W., Ruan, R. and Hu, B., 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35(6), pp.2245-2253. DOI: https://doi.org/10.1016/j.biombioe.2011.02.036
Hopkins, T.C., Graham, E.J.S. and Schuler, A.J., 2019. Biomass and lipid productivity of Dunaliella tertiolecta in a produced water-based medium over a range of salinities. Journal of Applied Phycology, 31(5), pp.3349-3358. DOI: https://doi.org/10.1007/s10811-019-01836-3 .
Iglina, T., Iglin, P. and Pashchenko, D., 2022. Industrial CO₂ capture by algae: a review and recent advances. Sustainability, 14(7), p.3801. DOI: https://doi.org/10.3390/su14073801.
IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, et al. (eds.)]. Cambridge University Press. DOI: https://doi.org/10.1017/9781009157926 .
International Energy Agency (IEA). 2024. CO₂ Emissions in 2023, IEA, Paris. DOI: https://www.iea.org/reports/co2-emissions-in-2023.
International Energy Agency (IEA). 2025. Global Energy Review 2025, IEA, Paris. DOI: https://www.iea.org/reports/global-energy-review-2025.
Isleten-Hosoglu, M., Gultepe, I. and Elibol, M., 2012. Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence-based method for quantification of its neutral lipid content. Biochemical Engineering Journal, 61, pp.11-19. DOI: https://doi.org/10.1016/j.bej.2011.12.001
Jiménez, C. and Niell, F.X., 1991. Growth of Dunaliella viridis Teodoresco: effect of salinity, temperature and nitrogen concentration. Journal of Applied Phycology, 3(4), pp.319-327. DOI: https://doi.org/10.1007/BF02392885.
Li, T., Wan, L., Li, A. and Zhang, C., 2013. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations. Chinese Journal of Oceanology and Limnology, 31(6), pp.1306-1314. DOI: https://doi.org/10.1007/s00343-013-2316-7.
Li, T., Zheng, Y., Yu, L. and Chen, S., 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy, 66, pp.204-213. DOI: https://doi.org/10.1016/j.biombioe.2014.04.010.
Liu, J., 2014. Optimization of biomass and lipid production by adjusting the interspecific competition mode of Dunaliella salina and Nannochloropsis gaditana in mixed culture. Journal of Applied Phycology, 26(1), pp.163-171. DOI: https://doi.org/10.1007/s10811-013-0099-z.
Lombardi, A. and Wangersky, P.J., 1995. Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti), and Dunaliella tertiolecta grown in batch culture. Hydrobiologia, 306(1), pp.1-6. DOI: https://doi.org/10.1007/BF00007853.
Mairet, F., Bernard, O., Masci, P., Lacour, T. and Sciandra, A., 2011. Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresource Technology, 102(1), pp.142-149. DOI: https://doi.org/10.1016/j.biortech.2010.06.138.
Mata, T.M., Almeidab, R. and Caetanoa, N.S., 2013. Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem Eng, 32, p.973.
Moheimani, N.R., Borowitzka, M.A., Isdepsky, A. and Fon Sing, S., 2013. Standard methods for measuring growth of algae and their composition. In: Borowitzka, M.A. and Moheimani, N.R. (eds.) Algae for Biofuels and Energy. Dordrecht: Springer, pp.265-284. DOI: https://doi.org/10.1007/978-94-007-5479-9_16.
Morales, M., Aflalo, C. and Bernard, O., 2021. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass and Bioenergy, 150, p.106108. DOI: https://doi.org/10.1016/j.biombioe.2021.106108.
Nigam, S., Rai, M.P. and Sharma, R., 2011. Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. American Journal of Biochemistry and Biotechnology, 7(3), pp.124-129. http://thescipub.com/abstract/10.3844/ajbbsp.2011.124.129.
Pacheco, M.M., Hoeltz, M., de Souza, D., Benitez, L.B., Schneider, R.C. and Müller, M.V., 2017. Current approaches in producing oil and biodiesel from microalgal biomass. In: Waste Biomass Management–A Holistic Approach. Springer, pp.289-310. DOI: https://doi.org/10.1007/978-3-319-49595-8_13.
Peeler, T.C., Stephenson, M.B., Einspahr, K.J. and Thompson, G.A., 1989. Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiology, 89(3), pp.970-976. DOI: https://doi.org/10.1104/pp.89.3.970.
Perez‐Garcia, O., Bashan, Y. and Esther Puente, M., 2011. Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella Vulgaris 1. Journal of Phycology, 47(1), pp.190-199. DOI: https://doi.org/10.1111/j.1529-8817.2010.00934.x.
Quigg, A. and Beardall, J., 2003. Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant, Cell and Environment, 26(5), pp.693-703. DOI: https://doi.org/10.1046/j.1365-3040.2003.01004.x.
Rios, L., Da Silva, C., Tasic, M., Wolf-Maciel, M. and Maciel Filho, R., 2016. Cultivation of three microalgae strains under mixotrophic conditions for biodiesel production. Chemical Engineering Transactions, 50, pp.409-414. http://dx.doi.org/10.3303/CET1650069.
Scragg, A., Morrison, J. and Shales, S., 2003. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technology, 33(7), pp.884-889. DOI: https://doi.org/10.1016/j.enzmictec.2003.01.001.
Shokravi, Z., Shokravi, H., Chyuan, O.H., Lau, W.J., Koloor, S.S.R., Petrů, M. and Ismail, A.F., 2020. Improving ‘lipid productivity’in microalgae by bilateral enhancement of biomass and lipid contents: A review. Sustainability, 12(21), p.9083. DOI: https://doi.org/10.3390/su12219083.
Takagi, M. and Yoshida, T., 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3), pp.223-226. DOI: https://doi.org/10.1263/jbb.101.223.
Talebi, A.F., Mohtashami, S.K., Tabatabaei, M., Tohidfar, M., Bagheri, A. and Ghasemi, Y., 2013. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2(3), pp.258-267. DOI: https://doi.org/10.1016/j.algal.2013.04.003.
Thompson Jr, G.A., 1996. Lipids and membrane function in green algae. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1302(1), pp.17-45. DOI: https://doi.org/10.1016/0005-2760(96)00045-8.
Truc, M.V., Phuc, N.H., Trung, V.P., Hieu, H.V. and Son, T.L., 2017. Accumulation of lipid in Dunaliella salina under nutrient starvation condition. American Journal of Food and Nutrition, 5(2), pp.58-61. DOI:10.12691/ajfn-5-2-2.
Uriarte, I., Farias, A., Hawkins, A.J.S. and Bayne, B.L., 1993. Cell characteristics and biochemical composition of Dunaliella primolecta butcher conditioned at different concentrations of dissolved nitrogen. Journal of Applied Phycology, 5(4), pp.447-453. DOI: https://doi.org/10.1007/BF02182737.
Vanitha, A., Narayan, M., Murthy, K. and Ravishankar, G.A., 2007. Comparative study of lipid composition of two halotolerant algae, Dunaliella salina and Dunaliella salina. International Journal of Food Sciences and Nutrition, 58(5), pp.373-382. DOI: https://doi.org/10.1080/09637480701252252.
Vo, T.Q. and Tran, D.T., 2014. Effects of salinity and light on the growth of Dunaliella isolates. Journal of Applied and Environmental Microbiology, 2(6), pp.208-211.
Vo, T.Q., Tran, S.M., Nguyen, P.T. and Mai, T.T., 2017. Growth, carotenoid production, antioxidant capacity, and lipid accumulation of Haematococcus sp. under different light intensities. American Journal of Plant Biology, 2(4), pp.142-147.
Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A. and Betenbaugh, M.J., 2011. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), pp.835-844. DOI: https://doi.org/10.1007/s00253-011-3399-8.
Xu, F., Hu, H.H., Cong, W., Cai, Z.L. and Ouyang, F., 2004. Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp. in mixotrophic conditions. Biotechnology Letters, 26(1), pp.51-53. DOI: https://doi.org/10.1023/B:BILE.0000009460.81267.cc. | ||
|
آمار تعداد مشاهده مقاله: 60 تعداد دریافت فایل اصل مقاله: 62 |
||
