Steps toward the weak higher category of weak higher categories in the globular setting | ||
Categories and General Algebraic Structures with Applications | ||
مقاله 3، دوره 4، شماره 1، اردیبهشت 2016، صفحه 9-42 اصل مقاله (597.29 K) | ||
نوع مقاله: Research Paper | ||
نویسنده | ||
Camell Kachour* | ||
Department of Mathematics, Macquarie University, North Ryde, NSW 2109, Australia. | ||
چکیده | ||
We start this article by rebuilding higher operads of weak higher transformations, and correct those in \cite{Cambat}. As in \cite{Cambat} we propose an operadic approach for weak higher $n$-transformations, for each $n\in\mathbb{N}$, where such weak higher $n$-transformations are seen as algebras for specific contractible higher operads. The last chapter of this article asserts that, up to precise hypotheses, the higher operad $B^{0}_{C}$ of Batanin and the terminal higher operad $B^{0}_{S_{u}}$, both have the fractal property. In other words we isolate the precise technical difficulties behind a major problem in globular higher category theory, namely, that of proving the existence of the globular weak higher category of globular weak higher categories. | ||
کلیدواژهها | ||
globular sets؛ weak higher categories؛ weak higher transformations؛ higher operads | ||
مراجع | ||
[1] J. Adámek and J. Rosick´ y, “Locally Presentable and Accessible Categories”, Cam- bridge University Press, 1994. [2] M. Batanin, Monoidal globular categories as a natural environment for the theory of weak-n-categories, Adv. Math. 136 (1998), 39–103. [3] F. Borceux, “Handbook of Categorical Algebra, Vol. 2”, Cambridge University Press, 1994. [4] L. Coppey and Ch. Lair, “Le¸ cons de th´ eorie des esquisses”, Universit´ e Paris VII, 1985. [5] C. Hermida, Representable multicategories, Adv. Math. 151(2) (2000), 164–225. [6] K. Kachour, D´ efinition alg´ ebrique des cellules non-strictes, Cah. Topol. G´ eom. Diff´ er. Cat´ eg. 1 (2008), 1–68. [7] C. Kachour, Operadic definition of the non-strict cells, Cah. Topol. G´ eom. Diff´ er. Cat´ eg. 4 (2011), 1–48. [8] C. Kachour, Correction to the paper “Operadic definition of the non-strict cells” (2011), Cah. Topol. G´ eom. Diff´ er. Cat´ eg. 54 (2013), 75-80. [9] C. Kachour, “Aspects of Globular Higher Category Theory”, Ph.D. Thesis, Mac- quarie University, 2013. [10] C. Kachour, ω-Operads of coendomorphisms and fractal ω-operads for higher struc- tures, Categ. General Alg. Structures Appl. 3(1) (2015), 65–88. [11] C. Kachour, Operads of higher transformations for globular sets and for higher magmas, Categ. General Alg. Structures Appl. 3(1) (2015), 89–111. [12] C. Kachour and J. Penon, Batanin ω-Operads for the weak higher transformations and stable pseudo-algebras, Work in progress (2015). [13] G.M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Aust. Math. Soc. 22 (1980), 1–83. [14] T. Leinster, “Higher Operads, Higher Categories”, London Math. Soc. Lect. Note Series, Cambridge University Press 298, 2004. [15] M. Makkai and R. Par´ e, “Accessible Categories: The Foundations of Categorical Model Theory”, American Mathematical Society, 1989. | ||
آمار تعداد مشاهده مقاله: 3,060 تعداد دریافت فایل اصل مقاله: 3,437 |