Basic notions and properties of ordered semihyperrings | ||
Categories and General Algebraic Structures with Applications | ||
مقاله 4، دوره 4، شماره 1، اردیبهشت 2016، صفحه 43-62 اصل مقاله (460.09 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
B. Davvaz* ؛ S. Omidi | ||
Department of Mathematics, Yazd University, Yazd, Iran. | ||
چکیده | ||
In this paper, we introduce the concept of semihyperring $(R,+,\cdot)$ together with a suitable partial order $\le$. Moreover, we introduce and study hyperideals in ordered semihyperrings. Simple ordered semihyperrings are defined and its characterizations are obtained. Finally, we study some properties of quasi-simple and $B$-simple ordered semihyperrings. | ||
کلیدواژهها | ||
ordered semihyperring؛ hyperideal؛ simple؛ quasi-simple؛ $B$-simple | ||
مراجع | ||
[1] N.G. Alimov, On ordered semigroups, Izvestiya Akad. Nauk SSSR. 14 (1950), 569- 576. [2] R. Ameri and H. Hedayati, On k-hyperideals of semihyperrings, J. Discrete Math. Sci. Cryptogr. 10(1) (2007), 41-54. [3] A. Asokkumar, Class of semihyperrings from partitions of a set, Ratio Math. 25 (2013), 3-14. [4] M. Bakhshi and R. A. Borzooei, Ordered polygroups, Ratio Math. 24 (2013), 31-40. [5] T. Changphas and B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math. 33 (2014), 425-432. [6] J. Chvalina, “Commutative hypergroups in the sence of Marty and ordered sets” Proceedings of the Summer School in General Algebra and Ordered Sets, Olomouck, 1994, 19-30. [7] J. Chvalina and J. Moucka, Hypergroups determined by orderings with regular endo- morphism monoids, Ital. J. Pure Appl. Math. 16 (2004), 227-242. [8] A.H. Clifford, Totally ordered commutative semigroups, Bull. Amer. Math. Soc. 64 (1958), 305-316. [9] P. Corsini, “Prolegomena of Hypergroup Theory”, Second edition, Aviani Editore, Italy, 1993. [10] P. Corsini and V. Leoreanu, “Applications of Hyperstructure Theory” Adv. Math., Kluwer Academic Publishers, Dordrecht, 2003. [11] B. Davvaz, Isomorphism theorems of hyperrings, Indian J. Pure Appl. Math. 35(3) (2004), 321-331. [12] B. Davvaz, Rings derived from semihyperrings, Algebras Groups Geom. 20 (2003), 245-252. [13] B. Davvaz, Some results on congruences in semihypergroups, Bull. Malays. Math. Sci. Soc. 23(2) (2000), 53-58. [14] B. Davvaz, “Polygroup Theory and Related Systems”, World scientific publishing Co. Pte. Ltd., Hackensack, NJ, 2013. [15] B. Davvaz and V. Leoreanu-Fotea, “Hyperring Theory and Applications”, Interna- tional Academic Press, Palm Harbor, USA, 2007. [16] B. Davvaz, P. Corsini and T. Changphas, Relationship between ordered semihy- pergroups and ordered semigroups by using pseudoorder, European J. Combin. 44 (2015), 208-217. [17] L. Fuchs, “Partially Ordered Algebraic Systems”, Pergamon Press, New York, 1963. [18] A.P. Gan and Y.L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition 31(6) (2011), 989-996. [19] L. Gillman and M. Jerison, “Rings of Continuous Functions”, Van Nostrand Com- pany, Inc., Princeton, 1960. [20] J.S. Golan, “Semirings and Their Applications”, Kluwer Academic Publishers, Dor- drecht, 1999. [21] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952), 624-625. [22] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73(2) (2011), 85-96. [23] S. Hoskova, Representation of quasi-order hypergroups, Glob. J. Pure Appl. Math. 1 (2005), 173-176. [24] S. Hoskova, Upper order hypergroups as a reflective subcategory of subquasiorder hypergroups, Ital. J. Pure Appl. Math. 20 (2006), 215-222. [25] X. Huang, Y. Yin and J. Zhan, Characterizations of semihyperrings by their (? γ ,? γ ∨ q δ )-fuzzy hyperideals, J. Appl. Math. 2013 (2013), 13 pages. [26] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958), 79-84. [27] N. Kehayopulu, Note on bi-ideals in ordered semigroups, Pure Math. Appl. 6 (1955), 333-344. [28] N. Kehayopulu and M. Tsingelis, On subdirectly irreducible ordered semigroups, Semigroup Forum 50 (1995), 161-177. [29] N. Kehayopulu and M. Tsingelis, Pseudoorder in ordered semigroups, Semigroup Forum 50 (1995), 389-392. [30] N. Kehayopulu, J.S. Ponizovskii and M. Tsingelis, Bi-ideals in ordered semigroups and ordered groups, J. Math. Sci. 112(4) (2002), 4353-4354. [31] M. Krasner, A class of hyperrings and hyperfields, Internat. J. Math. Math. Sci. 6(2) (1983), 307-312. [32] S. Lajos, On regular duo rings, Proc. Japan Acad. 45 (1969), 157-158. [33] F. Marty, Sur une generalisation de la notion de groupe, 8 iem Congress Math. Scan- dinaves, Stockholm (1934), 45-49. [34] J. Mittas, Hypergroupes canoniques, Math. Balkanica, 2 (1972), 165-179. [35] H. J. L. Roux, A note on prime and semiprime bi-ideals, Kyungpook Math. J. 35 (1995), 243-247. [36] T. Saito, Regular elements in an ordered semigroup, Pacific J. Math. 13 (1963), 263-295. [37] S. Spartalis, A class of hyperrings, Rivista Mat. Pura Appl. 4 (1989), 56-64. [38] O. Steinfeld, “Quasi-ideals in rings and semigroups”, Akademiai Kiado, Budapest, 1978. [39] D. Stratigopoulos, Hyperanneaux, hypercorps, hypermodules, hyperspaces vectoriels et leurs proprietes elementaires, C. R. Acad. Sci., Paris A (269) (1969), 489-492. [40] H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934), 914-920. [41] T. Vougiouklis, On some representations of hypergroups, Ann. Sci. Univ. Clermont- Ferrand II Math. 26 (1990), 21-29. [42] T. Vougiouklis, “Hyperstructures and Their Representations”, Hadronic Press Inc., Florida, 1994. [43] X.Z.Xu and J.Y.Ma, A note on minimal bi-ideals in ordered semigroups, Southeast Asian Bull. Math. 27 (2003), 149-154. | ||
آمار تعداد مشاهده مقاله: 6,615 تعداد دریافت فایل اصل مقاله: 3,599 |