C-connected frame congruences | ||
Categories and General Algebraic Structures with Applications | ||
مقاله 7، دوره 6، Speical Issue on the Occasion of Banaschewski's 90th Birthday (I)، فروردین 2017، صفحه 51-66 اصل مقاله (465.42 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Dharmanand Baboolal1؛ Paranjothi Pillay1؛ Ales Pultr2 | ||
1School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4000, South Africa. | ||
2Department of Applied Mathematics and CE-ITI, MFF, Charles University, Malostransk\'e n\'am. 24, 11800 Praha 1, Czech Republic. | ||
چکیده | ||
We discuss the congruences $\theta$ that are connected as elements of the (totally disconnected) congruence frame $\CF L$, and show that they are in a one-to-one correspondence with the completely prime elements of $L$, giving an explicit formula. Then we investigate those frames $L$ with enough connected congruences to cover the whole of $\CF L$. They are, among others, shown to be $T_D$-spatial; characteristics for some special cases (Boolean, linear, scattered and Noetherian) are presented. | ||
کلیدواژهها | ||
frame؛ frame congruence؛ congruence and sublocale lattice؛ connectedness؛ $T_D$-spatiality | ||
مراجع | ||
[1] Aull, C.E. and W.J. Thron, Separation axioms between T0 and T1, Indag. Math. 24 (1962), 26-37. [2] Ball, R.N., J. Picado, and A. Pultr, On an aspect of scatteredness in the point-free setting, Port. Math. 73(2) (2016), 139-152. [3] Banaschewski, B., J.L. Frith, and C.R.A. Gilmour, On the congruence lattice of a frame, Pacific J. Math. 130(2) (1987), 209-213. [4] Banaschewski, B. and A. Pultr, Pointfree aspects of the TD axiom of classical topology, Quaest. Math. 33(3) (2010), 369-385. [5] Birkhof, G., Lattice Theory", Amer. Math. Soc. Colloq. Publ. Vol. 25, Third edition, American Mathematical Society, 1967. [6] Chen, X., On the local connectedness of frames, J. Pure Appl. Algebra 79 (1992), 35-43. [7] Dube, T., Submaximality in locales, Topology Proc. 29 (2005), 431-444. [8] Gratzer, G., General Lattice Theory", Academic Press, 1978. [9] Isbell, J.R., Atomless parts of spaces, Math. Scand. 31 (1972), 5-32. [10] Johnstone, P.T., Stone Spaces", Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, Cambridge, 1982. [11] Picado, J. and A. Pultr, Frames and Locales: Topology without Points", Frontiers in Mathematics 28, Springer, Basel, 2012. [12] Picado, J. and A. Pultr, Still more about subfitness, to appear in Appl. Categ. Structures. [13] Plewe, T., Sublocale lattices, J. Pure and Appl. Algebra 168 (2002), 309-326. | ||
آمار تعداد مشاهده مقاله: 1,647 تعداد دریافت فایل اصل مقاله: 1,079 |