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Intersection graphs associated with
semigroup acts
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This article is dedicated to George A. Grätzer

Abstract. The intersection graph Int(A) of an S-act A over a semigroup
S is an undirected simple graph whose vertices are non-trivial subacts of
A, and two distinct vertices are adjacent if and only if they have a non-
empty intersection. In this paper, we study some graph-theoretic properties
of Int(A) in connection to some algebraic properties of A. It is proved that
the finiteness of each of the clique number, the chromatic number, and the
degree of some or all vertices in Int(A) is equivalent to the finiteness of the
number of subacts of A. Finally, we determine the clique number of the
graphs of certain classes of S-acts.

1 Introduction and preliminaries

In recent decades, assigning graphs to algebraic structures has opened a new
direction to study algebraic properties via graph-theoretic properties and
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vice versa. Several classes of graphs associated with algebraic structures
have been extensively investigated by many authors in the literature (for
example, [1–4, 6–8, 10, 12, 19, 21]). One such useful graph is the intersection
graph which is important in both theoretical as well as in applications. For
an overview of the theory of intersection graphs and important special classes
of them, see [14]. The idea of studying algebraic properties of algebraic
structures via their intersection graphs was initiated by Bosák [5] where the
intersection graph of proper subsemigroups of a semigroup was considered.
The intersection graph of some classes of ordered semigroups were briefly
studied in [16, 17]. Some papers devoted to intersection graphs derived from
other structures such as groups, rings, modules, and lattices have appeared
during the years. Inspired by these studies, Rasouli and Tehranian [18]
extended the idea to acts over semigroups and verified some elementary
properties of the intersection graph Int(A) of non-trivial subacts of an S-
act A over a semigroup S. Here we investigate more aspects of this graph
and obtain more results. We try to relate the algebraic properties of an
S-act to the graph-theoretic properties of its intersection graph.

Throughout S stands for a semigroup unless otherwise stated. Let A
be an S-act. Recall from [18] that the intersection graph of A, denoted
by Int(A), is an undirected simple graph whose vertices are non-trivial
subacts of A and two distinct vertices B and C are adjacent if and only if
B∩C 6= ∅. Here we first investigate some properties of the graph Int(A) for
an S-act A. Hereby, the interplay between some algebraic properties of an
S-act A and graph-theoretic properties of Int(A) is considered. We study
some graph-theoretic characters such as clique, chromatic, domination, and
the independence numbers in Int(A), and prove the equivalences of the
finiteness of the clique number, chromatic number, degree of some (or all)
vertices, and the degree of Int(A), that is, the number of non-trivial subacts
of A.

It is known that deciding whether a graph is weakly perfect is an NP-
complete problem. A class of weakly perfect intersection graphs of ideals
of a finite ring can be found in [15]. This result was generalized in [9],
where Corollary 4.3 shows the intersection graph of submodules of any finite
R-module (where R is any ring) is weakly perfect. In fact, the intersec-
tion graph of an intersection-closed family of non-empty subsets of a set is
weakly perfect if it has finite clique number. As a consequence, the intersec-
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tion graph of an S-act A with finite clique number is weakly perfect. This
motivates us to determine the clique number of such graphs for some classes
of S-acts. Regarding to the fact that each semigroup S can be viewed as
an S-act over itself, it is worth noting that all results obtained here are also
valid for S and the intersection graph Int(S) of non-trivial left ideals of S.

Let us give a brief account of some definitions about S-acts and graphs
needed in the sequel.

Let S be a semigroup. A non-empty set A is said to be a (left) S-act
if there is a mapping λ : S × A → A, denoting λ(s, a) by sa, satisfying
(st)a = s(ta) and, if S is a monoid with 1, 1a = a, for all a ∈ A and s, t ∈ S.
An element θ ∈ A is said to be a fixed element if sθ = θ for all s ∈ S. A
non-empty subset B of A is called a subact of A if it is closed under the
action, that is, sb ∈ B, for every s ∈ S and b ∈ B. By a non-trivial subact
of an S-act A we mean a (non-empty) proper subact of A. The set of all
non-trivial subacts of A is denoted by Sub(A). Clearly, S is an S-act with
its operation as the action and so subacts of S are exactly the left ideals
of S, that is, the non-empty subsets I of S satisfying SI ⊆ I. An element
z ∈ S is called a left zero element if zs = z for all s ∈ S. If each element
of S is a left zero element, then we say that S is a left zero semigroup. A
non-empty S-act is said to be simple if it has no non-trivial subact. A non-
trivial subact M of an S-act A is called a minimal subact of A if it properly
contains no subact of A. We denote the set of all minimal subacts of A
by Min(A). The socle of an S-act A, written as Soc(A), is the union of all
minimal subacts of A. A maximal subact of A is a non-trivial subact M for
which there is no subact of A properly contained between M and A. The
coproduct of a family {Ai | i ∈ I} of S-acts, denoted by

∐
i∈I Ai, is their

disjoint union
⋃
i∈I(Ai×{i}) with the action s(a, i) = (sa, i) for every s ∈ S

and a ∈ Ai, i ∈ I. For more information about S-acts and related notions,
the reader is referred to [13].

Let G be a graph with a vertex set V (G). For distinct elements x and y
of V (G), an x,y-path (or x− y) is a path with starting vertex x and ending
vertex y, and the length of the shortest x, y-path is denoted by d(x, y). If
G does not have such a path, then d(x, y)=∞. By the order of G, denoted
by |G|, we mean the number of vertices of G. The diameter of G, diam(G),
is the supremum of the set {d(x, y) : x, y ∈ V (G), x 6= y}. The number of
vertices which are adjacent to x is called the degree of x and is denoted by
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deg(x). The girth of a graph is the length of its shortest cycle. A graph
with no cycle has infinite girth. A complete graph with n vertices, denoted
by Kn, is a graph in which every pair of distinct vertices are adjacent. For a
graph G let χ(G) denote the chromatic number of G, that is, the minimum
number of colors which can be assigned to the vertices of G in such a way
that every two adjacent vertices have different colors. A clique of G is a
complete subgraph of G and the number of vertices in the largest clique of
G, denoted by ω(G), is called the clique number of G. A graph G is called
weakly perfect if χ(G) = ω(G). For undefined terms and concepts, one may
consult [20].

2 Some properties of the graph Int(A)

In this section, we proceed with the study of some facts about the intersec-
tion graphs of S-acts.

It is of interest to know whether a graph is an intersection graph of an S-
act. This property holds for every complete graph (see [18, Proposition 2.2]).
Here the two classes of bipartite and wheel graphs which are intersection
graphs of some S-acts are fully characterized.

A bipartite graph is a graph whose vertices can be partitioned into two
sets in such a way that no two vertices within the same set are adjacent.
Equivalently, a bipartite graph is a graph that contains no odd-length cy-
cle. A wheel graph of order n ≥ 4, denoted by Wn, is a graph formed by
connecting a single vertex to all vertices of a cycle.

Theorem 2.1. The following assertions hold:
(i) A bipartite graph G is the intersection graph of an S-act if and only

if G is one of the graphs K1,K2,K
c
2 and K1,2.

(ii) The wheel graph Wn is the intersection graph of an S-act if and only
if n = 4.

Proof. (i) Suppose that G = Int(A) is bipartite where A is an S-act and
|G| > 3. So A contains at least four non-trivial subacts. Let also V1 =
{B1, B2, . . . , Bn} and V2 = {C1, C2, . . . , Cm} be two (non-empty) disjoint
partitions of vertices of Int(A). Using [18, Theorem 3.1] and with no loss of
generality, one can assume that B1, C1 are adjacent. We claim thatm,n ≤ 2.
Let C1, C2, C3 ∈ V2. If C1 ∪ C2 = A, then C3 ⊆ C1 ∪ C2 which follows that
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C3 is adjacent to C1 or C2, which is a contradiction. Then C1 ∪ C2 is
a vertex of Int(A). If C1 ∪ C2 ∈ V2, then we have the path C1 − C1 ∪
C2 − C2 and if C1 ∪ C2 = Bi where i 6= 1, then B1 is adjacent to Bi
contradicting the hypothesis. Therefore, C1 ∪ C2 = B1. In the same way,
C1 ∪ C3 = B1. Then we get C2 = C3, a contradiction. Hence, |V2| ≤ 2.
By the same argument, |V1| ≤ 2. If |V1| = |V2| = 2, then, using [18,
Theorems 3.1, 4.1], girth(Int(A)) = 3 which contradicts the bipartitivity of
Int(A). Consequently, |G| = |Int(A)| = |V1| + |V2| ≤ 3. Since Kc

2 is the
only disconnected intersection graph of an S-act by [18, Theorem 3.1], the
assertion holds. The converse follows from [18, Proposition 2.2, Example
2.2, Theorems 3.1, 3.2].

(ii) Let n ≥ 5 and suppose that there exists an S-act A with non-trivial
subacts B0, B1, B2, . . . , Bn−1 such that the intersection graph Int(A) is the
following wheel graph Wn:

B0

B1

B2

B3

B4

Bn−1

.
.
.

Since B1 ∩ B2 6= ∅, B1 ∩ B2 = Bi for some i ∈ {0, 1, 2}. If B1 ∩ B2 = B1,
then Bn−1 ∩B2 6= ∅. If B1 ∩B2 = B2, then B3 ∩B1 6= ∅. If B1 ∩B2 = B0,
then B3∩B1 6= ∅. In each case, we get a contradiction. The converse follows
from [18, Proposition 2.2].

Theorem 2.1(ii) answers the question posed in [18] about the existence
of a connected graph with diameter 2 and girth 3 which is the intersection
graph of no S-act. In fact, all wheel graphs with at least five vertices satisfy
the mentioned condition.

In view of Theorem 2.1(i) and [18, Theorem 4.1(ii)], the following is
obtained.
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Corollary 2.2. For an S-act A, if |Int(A)| ≥ 4, then Int(A) contains K3.

An S-act A over a monoid S is called free if it has a basis X, that is, each
element a ∈ A is uniquely represented as a = sx for some s ∈ S and x ∈ X.
In this case, A ∼=

∐
x∈X S. Moreover, A is isomorphic to the S-act S × X

with the action given by s(t, x) = (st, x) for all s, t ∈ S, x ∈ X (see [13]).
If A and B are isomorphic S-acts, then their intersection graphs are

clearly isomorphic; and there is an example which shows that this implication
is strict (see [18, Example 2.3]). Here some conditions are posed to fill the
gap. To this aim, first note the following:

Lemma 2.3. Let A be a free S-act with a basis X where S is a group. Then
Int(A) ∼= Int(X), in which X is considered as an S-act with trivial action.

Proof. Using the assumption, A is isomorphic to the S-act S ×X. Since S
is a group, non-trivial subacts of A (if exist) are of the forms S × Y where
Y ⊂ X. Consider the set X as an S-act with trivial action. We claim that
the graphs Int(A) and Int(X) are isomorphic. For this, define the map
f : Int(A)→ Int(X) by f(S × Y ) = Y for any non-empty Y ⊂ X. Now it
is straightforward to see that f is a graph isomorphism.

Theorem 2.4. Let A and B be free S-acts and Int(A) ∼= Int(B). Then
A ∼= B under each of the conditions

(i) S is a group,
(ii) S has only finitely many left ideals, and A and B have finite bases.

Proof. (i) Assume that X and Y are bases of free S-acts A and B, re-
spectively. Using Lemma 2.3, Int(A) ∼= Int(X) and Int(B) ∼= Int(Y ),
where X and Y are considered as S-acts with trivial actions. It follows from
the assumption that Int(X) ∼= Int(Y ) and then 2|X| − 2 = |Sub(X)| =
|Sub(Y )| = 2|Y | − 2. This implies that |X| = |Y | and hence A ∼= B.

(ii) This is trivial.

The next result presents some necessary and sufficient conditions for the
graph Int(A) to be complete.

A graph G is said to be r-regular for some non-negative integer r if the
degree of each vertex of G is r.
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Proposition 2.5. Let A be an S-act.
(i) If S contains a left zero element z, then Int(A) is complete if and

only if za = za′ for all a, a′ ∈ A.
(ii) Let 3 ≤ |Sub(A)| <∞. Then the following are equivalent:
(1) Int(A) is complete.
(2) Int(A) is r-regular for some r ∈ N.
(3) |Min(A)| = 1.

Proof. (i) Let Int(A) be a complete graph and a, a′ ∈ A. Consider the two
subacts B = Sa and B′ = Sa′ of A. If B,B′ 6= A, then B ∩ B′ 6= ∅ whence
sa = s′a′ for some s, s′ ∈ S. This gives that za′ = (zs′)a′ = z(s′a′) =
z(sa) = (zs)a = za. If B = A or B′ = A, then the assertion clearly holds.
For the converse, it suffices to note that for all non-trivial subacts B,B′ of
A, zb = zb′ ∈ B ∩B′ for all b ∈ B, b′ ∈ B′.

(ii) We need only to show the non-trivial direction (2) ⇒ (1): If Int(A)
is not complete, then |Min(A)| > 1. Let M1,M2 be minimal subacts of
A. Using the hypothesis and [18, Theorem 3.1], Int(A) is connected and
hence d(M1,M2) = 2 by [18, Theorem 4.1(i)]. Thus there exists a non-trivial
subact B of A such that M1 − B −M2 is a path between M1 and M2. It
is clear that each vertex of Int(A) which is adjacent to M1 and not equal
to B is also adjacent to B. This gives that deg(B) > deg(M1), which is a
contradiction.

In the rest of this section, we restrict our attention to verify the existence
of a cut vertex and a cut edge in Int(A).

A vertex v in a graph is a cut vertex if the removal of v and all edges with
v as an end-point from the graph increases the number of components. A
cut edge of a graph is an edge whose deletion (the end-points stay in place)
from the graph increases the number of components.

Theorem 2.6. Let every subact of an S-act A contain a minimal subact.
Then the graph Int(A) has a cut vertex if and only if Soc(A) is the union of
two minimal subacts and is a maximal subact of A. Moreover, in this case,
Soc(A) is the unique cut vertex of Int(A).

Proof. Assume that B is a cut vertex in Int(A). Then there exist two non-
trivial subacts B1, B2 of A such that there is a path between B1 and B2 in
Int(A) but no path between them in Int(A)−{B}. Note that Int(A) must



138 A. Delfan, H. Rasouli, and A. Tehranian

be connected because, otherwise, it has no cut vertex by [18, Theorem 3.1].
Then, using [18, Theorem 4.1(i)], d(B1, B2) = 2 in Int(A) and so B1−B−B2

is a path from B1 to B2. Since B1 ∩ B and B2 ∩ B are disjoint non-trivial
subacts of A, it follows from the assumption that there exist two (distinct)
minimal subactsM1,M2 of A such thatM1 ⊆ B1∩B andM2 ⊆ B2∩B. We
claim that B = M1 ∪M2. It is clear that M1 ∪M2 ⊆ B. If M1 ∪M2 ⊂ B,
then the path B1−M1∪M2−B2 is a path from B1 to B2 in Int(A)−{B},
which is a contradiction. If B 6= Soc(A), then there exists a minimal subact
M3 of A such that B1 −M1 ∪M3 −M2 ∪M3 −B2 is a path from B1 to B2

in Int(A) − {B}, which is a contradiction. Hence, Soc(A) = M1 ∪M2 is a
cut vertex of Int(A). If there exists a non-trivial subact C of A such that
Soc(A) ⊂ C, then B1 − C − B2 is a path from B1 to B2 in Int(A) − {B},
which is a contradiction. This means that Soc(A) is a maximal subact of A.

For the converse, let Soc(A) = M1 ∪ M2 where M1,M2 are minimal
subacts of A and Soc(A) is a maximal subact of A. We claim that Soc(A) is
a cut vertex of Int(A). First note thatM1−Soc(A)−M2 is a path between
M1 and M2 in Int(A). Suppose that there exists a path M1 − B1 − B2 −
· · · −Bn −M2 in Int(A)− {Soc(A)}. This clearly gives that M1 ⊆ B1 and
M2 ⊆ Bn. We claim that there exists i ∈ {1, . . . , n} such that Soc(A) ⊆ Bi,
whence Soc(A) = Bi, by the maximality of Soc(A), which is a contradiction.
To do so, note that if M1 ⊆ Bn, then Soc(A) = M1 ∪M2 ⊆ Bn and we are
done. Otherwise, M1 * Bn. Let 1 ≤ k < n be the greatest positive integer
for which M1 ⊆ Bk. We show that Soc(A) ⊆ Bk. We have Bk ∩ Bk+1 6= ∅.
The choice of k implies that M1 * Bk ∩Bk+1. Then, using the assumption,
M2 ⊆ Bk ∩ Bk+1 and, hence, Soc(A) = M1 ∪M2 ⊆ Bk, as claimed. This
completes the proof.

Definition 2.7. Let A be an S-act and B,C be subacts of A. We say that
C covers B (or C is a cover for B), denoted by B < C, if B ⊂ C and
no element in Sub(A) lies strictly between B and C, that is, B ⊆ D ⊆ C
implies that D = B or D = C.

Lemma 2.8. Let an edge e with end-points B1 and B2 be a cut edge in
Int(A). Then, without loss of generality, B1 is a minimal subact of A and
B2 is a maximal subact of A as well as the unique cover for B1.

Proof. Since e is a cut edge, there is no path between B1 and B2 other than
e in Int(A). As B1 ∩ B2 6= ∅, if B1, B2 and B1 ∩ B2 are all distinct, then
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B1 − B1 ∩ B2 − B2 is a path between B1 and B2, which is a contradiction.
Hence, we may assume that B1 ⊂ B2. If there is a non-trivial subact B
of A such that B ⊂ B1 or B2 ⊂ B or B1 ⊂ B ⊂ B2, then we have the
path B1 −B −B2, which is a contradiction. So the subacts B1 and B2 are
minimal and maximal, respectively, and B1 < B2. If C is another cover for
B1, then we have the path B1 − C −B2, which is a contradiction.

Theorem 2.9. Let A be an S-act. If Int(A) has a cut edge, then |Int(A)| ≤
4.

Proof. Assume on the contrary that A has at least five non-trivial subacts.
Let us denote the set Sub(A) by {B1, B2, B3, . . .}. Let also e be a cut edge
of Int(A) with end-points, say, B1 and B2. In light of Lemma 2.8, with no
loss of generality, B1 is a minimal subact of A which is properly contained in
B2. If B1 intersects Bi for some i > 2, then it follows from the minimality
of B1 that B1 ⊆ Bi and so we have the path B1 − Bi − B2, which is a
contradiction. Thus B1 ∩ Bi = ∅ for all i > 2. If B1 ∪ B3 ∈ {B4, B5, . . .},
then there is the path B1−B1∪B3−B2 and if B1∪B4 ∈ {B3, B5, . . .}, then
there is the path B1−B1 ∪B4−B2. Each case yields a contradiction. This
gives that B1∪B3, B1∪B4 ∈ {B2, A}. Since B1∪B3 6= B1∪B4, without loss
of generality, B1 ∪B3 = B2 and B1 ∪B4 = A. Thus, B1 ∪B5 /∈ {A,B1, B2},
so there is a path B1 −B1 ∪B5 −B2, which is a contradiction.

Corollary 2.10. Let A be an S-act and Int(A) has a vertex of degree 1.
Then |Int(A)| ≤ 4.

Proof. Let B be a vertex of degree 1 and e be the only edge adjacent to B in
Int(A). Clearly, e is a cut edge in Int(A), which implies that |Int(A)| ≤ 4,
by Theorem 2.9.

Example 2.11. (i) Consider the monoid S = {1, s}, where s is an idempo-
tent element, and A = {a, b, c} with the action defined by 1c = c, sc = a,
and a, b are fixed elements. Then all non-trivial subacts of A are the sets
{a}, {b}, {a, b} and {a, c}. Since Soc(A) = {a, b} is the union of two minimal
subacts of A and is a maximal subact of A, using Theorem 2.6, {a, b} is the
only cut vertex of the graph Int(A). Moreover, the edge {a, b} − {b} is the
only cut edge of Int(A), as follows:
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{a}

{a,c}
{a,b}

{b}

(ii) If A is an S-act with trivial action, then Soc(A) = A. This implies
that the graph Int(A) has no cut vertex, by Theorem 2.6.

3 Some finiteness conditions

In this section, we study finiteness conditions of some parameters of inter-
section graphs of S-acts such as clique number and chromatic number.

We say that an S-act A is Artinian (Noetherian) if every descending
(ascending) chain of subacts of A terminates. It is clear that every subact
of an Artinian S-act contains a minimal subact.

Remark 3.1. Consider any S-act A with infinitely many pairwise disjoint
non-trivial subacts, say B1, B2, B3, . . . . Then A is neither Noetherian nor
Artinian, whence ω(Int(A)) = ∞. Indeed, the infinite strict ascending
chain B1 ⊂ B1 ∪ B2 ⊂ B1 ∪ B2 ∪ B3 ⊂ · · · of subacts of A gives an infinite
clique in Int(A). Moreover, with no loss of generality, one can assume that
the subact

⋃∞
i=1Bi is non-trivial. In this case, we have the infinite strict

descending chain
⋃∞
i=1Bi ⊃

⋃∞
i=2Bi ⊃

⋃∞
i=3Bi ⊃ · · · of subacts of A which

gives another infinite clique in Int(A) with no adjacent vertex with the
previous one. As a consequence, if A is a Noetherian or an Artinian S-act,
then the set Min(A) is finite. For instance, let {Ai}∞i=1 be a family of S-
acts and A =

∐∞
i=1Ai. Since A1, A2, A3, . . . are pairwise disjoint non-trivial

subacts of A, ω(Int(A)) =∞.

In the following, a main result concerning finiteness of clique and chro-
matic numbers of the graph Int(A) is presented.

Theorem 3.2. Let A be an S-act. Then the following are equivalent:
(i) deg(B) <∞ for some vertex B in Int(A).
(ii) deg(B) <∞ for each vertex B in Int(A).
(iii) ω(Int(A)) <∞.
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(iv) χ(Int(A)) <∞.
(v) |Int(A)| <∞, that is, the number of subacts of A is finite.

Proof. The implications (v) ⇒ (iv) ⇒ (iii) and (ii) ⇒ (i) are trivial.
(i) ⇒ (v) Assume that deg(B) <∞ for some vertex B in Int(A). Sup-

pose, on the contrary, that |Int(A)| = ∞. Since deg(B) < ∞, there exist
infinitely many (pairwise distinct) Bi ∈ Sub(A), i ∈ I, for which Bi∩B = ∅.
Thus, Bi ∪B 6= Bj ∪B for all i 6= j. Hence, {Bi ∪B}i∈I contains infinitely
many vertices of Int(A) that are adjacent to B, which is a contradiction.

(iii) ⇒ (ii) Suppose that there exists a vertex B and an infinite set
W = {Bi : i ∈ I} such that Bi is adjacent to B for all i ∈ I. By the
well-known Infinite Ramsey’s Theorem, the subgraph of Int(A) induced by
W contains either an infinite clique or an infinite set of pairwise disjoint
subacts. Both cases yield an infinite clique in Int(A) (see Remark 3.1), so
if (iii) holds then (ii) holds.

As a direct consequence of Theorem 3.2, a useful result in semigroup
theory is obtained below.

Corollary 3.3. For a semigroup S, we have the following equivalent asser-
tions:

(i) There is a non-trivial left ideal of S intersecting only finitely many
left ideals.

(ii) Any non-trivial ideal of S intersects only finitely many left ideals.
(iii) Int(S) is colored by finitely many colors.
(iv) S has finitely many left ideals.

The following example shows that the clique number of the graph Int(A)
is not necessarily finite.

Example 3.4. (i) Take the monoid S = (N∞,min) where n < ∞ for all
n ∈ N. The non-trivial ideals of S are exactly the principal ones ↓ k = {x ∈
N∞ | x ≤ k}, k ∈ N, and its only non-principal ideal N (see [11, Remark 4]).
Note that ↓ m ⊂↓ n if and only if m < n for every m,n ∈ N. Therefore, the
graph Int(A) is complete with ω(Int(A)) =∞.

(ii) Consider the semigroup S = (N,+). It is easily seen that non-trivial
ideals of S are exactly the sets Nk = {k + 1, k + 2, . . .} where k ∈ N; and
Nm ⊂ Nn if and only if n < m for every m,n ∈ N. Then Int(A) is complete
with ω(Int(A)) =∞.
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Proposition 3.5. The following statements are satisfied:
(i) Let {Ai}ni=1 be a family of S-acts and A =

∐n
i=1Ai. Then χ(Int(A)) <

∞ if and only if χ(Int(Ai)) <∞ for all i ∈ {1, . . . , n}.
(ii) For a free S-act A with finite basis, χ(Int(A)) < ∞ if and only if

χ(Int(S)) <∞.

Proof. (i) It suffices to note that |Sub(A)| <∞ if and only if |Sub(Ai)| <∞
for all i ∈ {1, . . . , n}. Now apply Theorem 3.2.

(ii) It follows from (i).

We close this section with some results on the domination number and
independence number of the graph Int(A). Let us give some definitions.

Let G be a graph. The (open) neighborhood N(x) of a vertex x ∈ V (G)
is the set of vertices which are adjacent to x. For a subset T of vertices, we
put N(T ) =

⋃
x∈T N(x) and N [T ] = N(T ) ∪ T . If N [T ] = V (G), then T is

said to be a dominating set. It is clear that every vertex not in a dominating
set T is adjacent to a vertex in T . The domination number of G, γ(G), is
the minimum cardinality of a dominating set of G. An independent set in a
graph is a set of pairwise non-adjacent vertices. The independence number
of G, written by α(G), is the maximum size of independent sets.

Theorem 3.6. Let A be an Artinian S-act. Then the following assertions
hold:

(i) Min(A) is an independent as well as a dominating set.
(ii) α(Int(A)) = |Min(A)|.
(iii) γ(Int(A)) ≤ α(Int(A)).
(iv) γ(Int(A)) = 1 or 2.

Proof. (i) It is clear.
(ii) Using (i), α(Int(A)) ≥ |Min(A)|. In view of Remark 3.1, suppose

that |Min(A)| = n. If α(Int(A)) = m > n and W = {C1, C2, . . . , Cm} is
an independent set in Int(A) of size m, then it follows from the hypothesis
that there are distinct subacts Ci, Cj in W such that they contain a same
minimal subact. Thus Ci ∩ Cj 6= ∅, which is a contradiction.

(iii) It follows from (i) and (ii).
(iv) If A has only one minimal subact, sayM , then {M} is a dominating

set and so γ(Int(A)) = 1. If Min(A) = {Mi : i ∈ I} with |I| ≥ 2, then
{⋃i∈I,i 6=jMi,Mj} forms a dominating set in Int(A) and hence γ(Int(A)) ≤
2.
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4 On clique number of Int(A)

As we mentioned in Introduction, it follows from [9, Corollary 4.3] that the
intersection graph of an S-act with finite clique number is weakly perfect.
In this section, we find the clique number (equivalently, chromatic number)
of such graphs for some classes of S-acts.

The intersection graph of an S-act A with countably infinitely many
subacts is also weakly perfect. Indeed, using Theorem 3.2, χ(Int(A)) =
ω(Int(A)) = ℵ0.

It should be noted that the finiteness of ω(Int(A)) for an S-act A implies
that A contains finitely many subacts (see Theorem 3.2) and then each non-
trivial subact of A contains a minimal subact. This fact is implicitly used
in the proof of the following result.

Theorem 4.1. Let A be an S-act whose graph Int(A) has finite clique
number. Then the following assertions hold:

(i) If |Min(A)| = 2, then ω(Int(A)) = m+ 1, where m is the maximum
degree of minimal subacts of A.

(ii) If |Min(A)| = 3 and A = Soc(A), then ω(Int(A)) = 3.
(iii) If S is a group and |Int(A)| = n, then n is even and ω(Int(A)) =

1
2n.

(iv) If the action of S on A is trivial and |A| = n, then |Int(A)| = 2n−2
and ω(Int(A)) = 2n−1 − 1.

Proof. (i) Let Min(A) = {M1,M2} and mi = deg(Mi) + 1 which is the
number of non-trivial subacts of A containing Mi, i ∈ {1, 2} and assume,
with no loss of generality, that m1 ≥ m2. We claim that ω(Int(A)) = m1.
First note that the set Sub(A) can be partitioned to the following (possibly
empty) subsets:

W1 := {B ∈ Sub(A) | Soc(B) = M1},
W2 := {B ∈ Sub(A) | Soc(B) = M2},
W3 := {B ∈ Sub(A) | Soc(B) = M1 ∪M2}.

Moreover, |W1| + |W3| = m1 and |W2| + |W3| = m2. The elements of W1

induce a clique of order |W1| in Int(A) which are colored by |W1| colors. On
the other hand, for any B1 ∈ W1 and B2 ∈ W2, B1 ∩ B2 = ∅ and it follows
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from m1 ≥ m2 that |W1| ≥ |W2|. Therefore, the elements of W2 forming
a clique of order |W2| in Int(A) are colored by |W2| colors of the elements
of W1. This means that the elements of W1 ∪W2 are colored by exactly
|W1| colors. Also the elements of W3 are colored by |W3| colors different
from that of W1 because the elements of W3 form a clique of order |W3| and
B1 ∩ B3 6= ∅ for any B1 ∈ W1 and B3 ∈ W3. Furthermore, it is clear that
the elements of W1 ∪W3 induce the largest clique in Int(A). Consequently,
ω(Int(A)) = χ(Int(A)) = |W1|+ |W3| = m1.

(ii) Let Min(A) = {M1,M2,M3} and M1 ∪M2 ∪M3 = A. We show that
M1,M2,M3, M1∪M2,M1∪M3 andM2∪M3 are all of the non-trivial subacts
of A. To this end, consider another non-trivial subact B of A and M1 ⊂ B,
say. This gives that either B ∩M2 6= ∅ or B ∩M3 6= ∅. So either M2 ⊆ B
or M3 ⊆ B. Suppose, without loss of generality, that M2 ⊆ B and M3 * B.
Then B ∪M3 = A and B ∩M3 = ∅. This implies that B = M1 ∪M2, which
is a contradiction. Hence, it is clear that ω(Int(A)) = 3.

(iii) Suppose that |Int(A)| = n. Let Min(A) = {M1,M2, . . . ,Mt} and
mi be the number of non-trivial subacts of A which contains Mi for all
i ∈ {1, . . . , t}. First we show that n is even and m1 = m2 = · · · = mt = 1

2n.
For this, take Vi := {B ∈ Sub(A) | Mi ⊆ B} and Wi := Sub(A) \ Vi for
every i ∈ {1, . . . , t}. Being S a group implies that the map f : Vi → Wi

given by f(B) = A \ B, for any B ∈ Vi, is a one to one correspondence
so that |Wi| = |Vi| = mi, 1 ≤ i ≤ t. It follows that n = |Int(A)| =
|Sub(A)| = |Vi| + |Wi| = mi + mi = 2mi, as required. We claim that
χ(Int(A)) = ω(Int(A)) = 1

2n. Take i = 1. The elements of V1 form a
clique of order m1 in Int(A) and m1 colors are needed for coloring the
elements of V1. Moreover, any B ∈ W1 can be colored by the same color of
its complement A\B in V1. Therefore, m1 ≤ ω(Int(A)) ≤ χ(Int(A)) = m1

and hence ω(Int(A)) = χ(Int(A)) = m1 = 1
2n.

(iv) Let A = {a1, a2, . . . , an}. Clearly, |Int(A)| = |Sub(A)| = 2n − 2.
Define W1 := {B ∈ Sub(A) | a1 ∈ B} and W2 := Sub(A) \ W1. It is
obvious that |W1| = |W2| = 2n−1 − 1. The elements of W1 form a clique in
Int(A) and so 2n−1 − 1 colors are needed for coloring them. Furthermore,
any B ∈ W2 can be colored by the same color of its complement A \ B in
W1. Thus 2n−1 − 1 ≤ ω(Int(A)) ≤ χ(Int(A)) = 2n−1 − 1 and then the
assertion holds.

Open Problem 4.2. For every S-act A, if the graph Int(A) has finite clique
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number, is ω(Int(A)) equal to m + 1, where m is the maximum degree of
minimal subacts of A?

Theorem 4.1 and the following example give a positive answer to the
above problem in some particular cases.

Example 4.3. Take the monoid S = {1, s, t} where S = {s, t} is a left
zero semigroup. Consider the S-act A = {z1, z2, z3, a, b, c} with three fixed
elements z1, z2, z3, and sa = ta = sb = z1, tb = sc = z2, tc = z3 (see [13, Ex-
ample I.5.5(6)]). The non-trivial subacts of A are listed as

A1 = {z1, z2, z3} A2 = {z1, z2, z3, a} A3 = {z1, z2, z3, b}
A4 = {z1, z2, z3, c} A5 = {z1, z2, z3, b, c} A6 = {z1, z2, z3, a, c}
A7 = {z1, z2, z3, a, b} B1 = {z1, z2} B2 = {z1, z2, b}
B3 = {z1, z2, a} B4 = {z1, z2, a, b} C1 = {z1, z3, a}
C2 = {z1, z3} D1 = {z2, z3} D2 = {z2, z3, c}
E1 = {z1, a} M1 = {z1} M2 = {z2}
M3 = {z3}.
The subacts M1,M2, and M3 are all minimal subacts of A which are of
the degrees 14, 13, and 11, respectively. Also Int(A) is weakly perfect and
χ(Int(A)) = ω(Int(A)) = 15 = deg(M1)+1 in which deg(M1) is maximum
between the degrees of all minimal subacts of A:

A1

A2

A3
A4

B1

B2

B3

B4

M1

E1

C1

C2
A5

A6

A7

D1

D2

M2

M3
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A planar graph is one which has a drawing in the plane without edge
crossing. A well-known characterization of the planar graphs states that a
graph is planar if and only if it contains no subgraph which is a subdivision
of K5 or K3,3.

Proposition 4.4. Let Int(A) be a planar graph for an S-act A. Then the
following assertions hold:

(i) A is both Artinian and Noetherian.
(ii) 1 ≤ |Min(A)| ≤ 3.
(iii) If |Min(A)| = 3, then ω(Int(A)) ∈ {3, 4}.

Proof. (i) Any infinite increasing chain or decreasing chain of non-trivial
subacts of A gives K5 as a subgraph of Int(A), which contradicts the pla-
narity of Int(A).

(ii) Suppose, on the contrary, that M1,M2,M3, and M4 are minimal
subacts of A. Then the distinct non-trivial subacts M1,M1 ∪ M2,M1 ∪
M3,M1 ∪M4 and M1 ∪M2 ∪M3 form the subgraph K5 of Int(A), which is
a contradiction. Moreover, using (i), A contains at least one minimal subact.
Then the assertion holds.

(iii) In view of Theorem 4.1(ii), it remains to consider the case A 6=
M1 ∪ M2 ∪ M3 in which M1,M2, and M3 are three minimal subacts of
A, noting that any non-trivial subact of A contains one of them by (i). We
claim that A has only seven non-trivial subacts, which areM1,M2,M3,M1∪
M2,M1 ∪M3,M2 ∪M3, and M1 ∪M2 ∪M3. Indeed, let B be another non-
trivial subact of A. Without loss of generality, assume that M1 ⊂ B. Then
the subacts M1,M1 ∪M2,M1 ∪M3,M1 ∪M2 ∪M3, and B form K5, which
is a contradiction. Now it is easy to see that ω(Int(A)) = 4.

Remark 4.5. If Int(A) is planar, where A is a free S-act over a monoid
S, then S is a group or isomorphic to A. Indeed, A = S × X, where
X is a non-empty set. On the contrary, suppose that S is a non-group
and non-isomorphic to A. Then there exist a non-trivial ideal I of S and
distinct elements x1, x2 in X. Then we have the non-trivial subacts Bi =
S × {xi}, Ci = I × {xi}, i = 1, 2 of A. Now it is easily seen that the non-
trivial subacts B1, C1, B2 ∪C1, B1 ∪C2, and C1 ∪C2 form the subgraph K5

of Int(A), which contradicts the planarity of Int(A).

Example 4.6. (i) The converse of Proposition 4.4(ii) is not true in general.
For this, see Example 3.4(i) where |Min(A)| = 1 and Int(A) is not planar.
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(ii) Let A be an S-act with trivial action. Then |Min(A)| = |A|. Ap-
plying Theorem 3.6, we get α(Int(A)) = |A|. Further, if |A| > 3, then the
graph Int(A) is not planar by Proposition 4.4(ii).
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