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Abstract. In this article the notions of semi weak orthogonality and semi
weak factorization structure in a category X are introduced. Then the re-
lationship between semi weak factorization structures and quasi right (left)
and weak factorization structures is given. The main result is a characteriza-
tion of semi weak orthogonality, factorization of morphisms, and semi weak
factorization structures by natural isomorphisms.

1 Introduction

The notions of (right, left) factorization structure appeared in [2], while
weak factorization structures introduced in [1]. In [9] and [7] the notions of
quasi right, respectively, quasi left, factorization structure and some related
results has been given. Since in various categories, there are important
classes of morphisms that are not factorization structures nor even weak
factorization structures, a weaker notion of factorization structure is deemed
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necessary; so the notion of semi weak factorization structure is introduced.
The other main result is to look at semi weak factorization structures as
certain isomorphisms in a particular quasicategory.

In the present article we first give the preliminaries in the current section,
as well as a characterization of weak factorization structures in Proposition
1.3. Then in Section 2, we give the notions of semi weak orthogonality and
semi weak factorization structure and its relation with quasi right, quasi left,
and weak factorization structures. A characterization of semi weak factor-
ization structures is given in Proposition 2.9. We also prove when for a given
quasi right structureM, there is an E , with (E ,M) a semi weak factorization
structure. In Section 3, we present a characterization of semi weak orthog-
onality, factorization of morphisms, and semi weak factorization structures
in terms of certain natural isomorphisms. Finally in the last section, that is,
Section 4, we present several examples of semi weak factorization structures
that are not weak factorization structures.

Definition 1.1. See [1] and [4]. Let E and M be classes of morphisms
in X . We say that E is (weakly orthogonal) orthogonal to M, denoted by
(E ⊥wM) E ⊥M, whenever for every commutative diagram

X

///

u //

e
��

M

m
��

Y v
// Z

with e ∈ E and m ∈ M, there is a (morphism) uniquely determined
morphism w : Y //M with we = u and mw = v.

Definition 1.2. [1] A weak factorization system in X is a pair (E ,M) of
classes of morphisms such that

(i)M = E� and E = �M;
(ii) every morphism f ∈ X has a factorization f = me with m ∈M and

e ∈ E .

Let E andM be two classes of morphisms in the category X . Let e, e′ ∈ E
and m,m′ ∈ M be given. We denote e

e′

�m and e�
m′
m, whenever for any f
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and g making the squares

· e′ //

e

��

·
m and
��· g
//

d′
@@

·

· f //

e

��

·
m

��·
m′
//

d
@@

·

commute, there exist diagonals rendering both triangles commutative.

Now we can define the classes E �M and
E
�M as

E �M = {m ∈M | e�
m′
m, ∀e ∈ E and ∀m′ ∈M};

E
�M = {e ∈ E | e

e′

�m, ∀e′ ∈ E and ∀m ∈M}.

Proposition 1.3. Let E and M be classes of morphisms in X which are
closed under composition. (E ,M) is a weak factorization system if and only
if

(i)M = E �M and E =
E
�M,

(ii) every morphism f ∈ X has a factorization f = me with m ∈M and
e ∈ E.

Proof. This follows directly from the definition.

With 〈g〉E = {ge|ge is defined and e ∈ E} (for E the class of all mor-
phisms, 〈g〉E is just a principal sieve, see [7]), we have

Definition 1.4. See [9]. Suppose that M is a class of morphisms in X .
We say that X has quasi right M- factorizations or M is a quasi right

factorization structure in X , whenever for all morphisms Y
f // X in X ,

there existsM
mf // X ∈M/X such that

(a) 〈f〉 ⊆ 〈mf 〉;
(b) if 〈f〉 ⊆ 〈m〉, with m ∈M/X, then 〈mf 〉 ⊆ 〈m〉.
mf is called a quasi right part of f .

The notion of a cosieve is dual to that of a sieve. A principal cosieve gen-
erated by f is denoted by 〉f〈. Also the notion of a quasi left E-factorization
is dual of quasi right factorization, see [7].
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2 Semi weak factorization structure

In this section, the notion of semi weak factorization structure, based on semi
weak orthogonality, is introduced and its relation with quasi right, quasi left,
and weak factorization structures is given. A characterization of semi weak
factorization structures is given in Proposition 2.9, which is the counterpart
of Proposition 1.3. We also prove when for a given quasi right structureM,
there is an E , with (E ,M) a semi weak factorization structure. Some other
properties are investigated.

Definition 2.1. Suppose that X is a category and E and M are classes
of morphisms in X . We say that E is semi weak orthogonal to M, written
E ⊥swM, whenever

(SW1) for any commutative diagram

E //

e

��

M

m′

��

///

X m
//

d′

77

Y

where m,m′ ∈ M and e ∈ E there exists a morphism X
d′ //M making

the lower triangle commute;
(SW2) for any commutative diagram

E
e //

///e′

��

M

m

��
X //

d

77

Y

where m ∈M and e, e′ ∈ E there exists a morphism X
d //M making the

upper triangle commute.

Proposition 2.2. Suppose that E and M are classes of morphisms in X .
If E ⊥wM, then E ⊥swM.

Proof. The proof is straightforward.
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Definition 2.3. Suppose that X is a category and E andM are classes of
morphisms in X . We say that X has semi weak (E ,M)-factorizations or
(E ,M) is a semi weak factorization structure in X , whenever

(SWF1) for all f : Y // X there exists m ∈ M/X and e ∈ Y/E such
that f = me; and

(SWF2) E ⊥swM.

Remark 2.4. Weak (E ,M)- factorizations are semi weak (E ,M)-factorization
structures.

Theorem 2.5. If X has semi weak (E ,M)-factorizations, then X has quasi
rightM-factorizations and quasi left E-factorizations.

Proof. To show that X has quasi rightM-factorizations, let the morphism
f in X be given. By (SWF1), there exist mf ∈ M and e ∈ E such that
f = mfe. So f factors through mf . Now suppose that there exist m ∈ M
such that 〈f〉 ⊆ 〈m〉. Thus 〈mfe〉 ⊆ 〈m〉 and so by (SWF2), we have
〈mf 〉 ⊆ 〈m〉. Therefore X has quasi right M-factorizations. Similarly X
has quasi left E-factorizations.

Corollary 2.6. If X has semi weak (E ,M)-factorizations and f = me, then
m is a quasi right part and e is a quasi left part of f .

Proof. By the fact that E ⊥swM, the proof is obvious.

Let X have pullbacks. The partial morphism category X⇀ has the same
objects as X , with morphisms f

⇀

= [(if , f)] : X // Y equivalence classes

of pairs ( if : Df
// X , f : Df

// Y ) as shown in the following dia-
gram

Df

if
��

f // Y

X
f
⇀

>>

where if is a universal mono, that is, its pullback along every morphism
exists. Equivalence of (if , f) and (ig, g) means that there is an isomor-
phism k for which if = igk and f = gk. The composition of morphisms
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X
f
⇀

// Y
g
⇀

// Z is defined by

g
⇀

f
⇀

= [(ig, g)][(if , f)] = [(if ◦ f−1(ig), g ◦ i−1
g (f))],

as shown in the following diagram

E

p.bf−1(ig)

��

i−1
g (f)

// Dg

ig

��

g // Z

Df

if
��

f
// Y

g
⇀

??

X
f
⇀

==

where the commutative square is a pullback square.
Now let E andM be classes of morphisms in X and E ′ andM′ be the

classes:

E ′ = {[(ie, e)] | dom(ie) = dom e, e ∈ E and ie is a universal mono }
M′ = {[(1,m)] | dom 1 = dom m and m ∈M}

We have the following proposition.

Proposition 2.7. Let (E ,M) be a semi weak factorization structure for X
and E be stable under pullbacks, see [2, Definition 28.13]. Then (E ′,M′) is
a semi weak factorization structure for X⇀.

Proof. For an arbitrary morphism f
⇀

= [(if , f)] : X // Y in X
⇀

, since f ∈
X , we have the commutative diagram

Df
f //

e   
///

Y

M

m

??
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where e ∈ E and m ∈M. So we have

Df

p.b1

��

e //M

1

��

m // Y

Df

if
��

e
//M

m
⇀

??

X
e
⇀

>>

X
f
⇀

//

e
⇀

  
///

Y

M
m
⇀

>>

where m
⇀

= [(1,m)] ∈M′ and e⇀ = [(if , e)] ∈ E ′.
Suppose that e

⇀

= [(ie, e)] ∈ E ′ and m
⇀

,m′
⇀

∈ M′ are given such that
〈m′

⇀

e
⇀〉 ⊆ 〈m⇀〉. Thus m′

⇀

e
⇀

= m
⇀

α
⇀

, hence [(iα,mα)] = [(ie,m
′e)]. Since

(E ,M) is a semi weak factorization structure for X , we have the diagram

De
α //

e
��

B

m
��

///

C
m′

//

d

88

D

with a diagonal d. Now d
⇀

= [(1, d)] gives the diagonal for the diagram

A
α
⇀

//

e
⇀

��
///

B

m
⇀

��
C

m′
⇀

//
d
⇀

88

D

So the condition (SW1) holds.
Now suppose that e

⇀

, e′
⇀

∈ E ′ and m⇀ ∈ M′ are given such that 〉m⇀e′
⇀

〈 ⊆
〉e⇀〈. Thus m⇀e′

⇀

= γ
⇀

e
⇀

. So, [(ie ◦ e−1(iγ), γ ◦ i−1
γ (e))] = [(ie′ ,m ◦ e′)]. Since E

is stable under pullbacks, i−1
γ (e) ∈ E . So we have the commutative diagram
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De′
e′ //

///i−1
γ (e)

��

B

m

��
Dγ γ

//
d

88

D

in X, with the diagonal d. Setting d
⇀

= [(iγ , d)], we have the diagram

A
e′
⇀

//

///e
⇀

��

B

m
��

C
γ
⇀

//
d
⇀

88

D

So the condition (SW2) holds. Therefore, (E ′,M′) is a semi weak factoriza-
tion structure for X⇀.

Let E and M be two classes of morphisms in the category X , with

e, e′ ∈ E andm,m′ ∈M. We write e′
e

� m and e�
m
m′, respectively, whenever

in the unbroken commutative diagrams

· e //

///e′

��

·
m and
��· //

d

88

·

· //

e

��

·
m′

��
///

· m
//

d′
88

·

there exist morphisms d and d′ such that e = de′ and m = m′d′.

Remark 2.8. (i) e′
e

� m if and only if, whenever 〉me〈⊆〉e′〈, then 〉e〈⊆〉e′〈;
(ii) e�

m
m′ if and only if, whenever 〈me〉 ⊆ 〈m′〉, then 〈m〉 ⊆ 〈m′〉.

Now we can define the classes
E
�M and E �

M as follows:
E
�M = {e′ ∈ E | e′

e

� m, ∀e ∈ E and ∀m ∈M};

E �
M = {m′ ∈M | e�

m
m′, ∀e ∈ E and ∀m ∈M}.
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Proposition 2.9. Suppose that E and M are classes of morphisms in X .
(E ,M) is a semi weak factorization structure in X if and only if

(i) E =

E
�M andM = E �

M ;
(ii) every morphism f ∈ X has a factorization f = me with m ∈M and

e ∈ E.

Proof. This follows directly from the definition.

Lemma 2.10. Let (E ,M) be a semi weak factorization structure for the
category X then:

(1) For any section s, sf ∈ E implies that, f ∈ E.
(2) For any retraction r, fr ∈M implies that f ∈M.

Proof. (1) Suppose that s : C // K is a section and sf ∈ E . By Proposi-

tion 2.9 it is enough to show that f ∈
E
�M. Consider the following commu-

tative diagram

A

///

e //

f
��

B

m
��

C
h
// D

where m ∈ M and e ∈ E . Since s is a section, there exists a morphism
r : K // C such that rs = 1 and since sf ∈ E , the following commutative
diagram

A
e //

///sf
��

B

m
��

K
hr

//
d

88

D

has a diagonal d. Hence, ds is the diagonal of the first diagram making the

upper triangle commute. Therefore, f ∈
E
�M.

(2) The proof is similar to (1).

Theorem 2.11. LetM be a class of morphisms in X which is closed under
composition and is a quasi right factorization structure. If the class E =
{e|∃f 3: f = me with m a right part of f} is closed under composition and
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for all m1, m2 in M and e1, e2 in E, the equality m1e1 = m2e2 implies
that 〈m1〉 = 〈m2〉 and 〉e1〈=〉e2〈, then (E ,M) is a semi weak factorization
structure for X .

Proof. Since X has quasi rightM-factorizations, for all morphisms f in X
there existsmf ∈M such that f = mfe1. By definition of E we have e1 ∈ E .
To show (SW1), suppose that m and m′ in M and e in E are given such
that 〈me〉 ⊆ 〈m′〉. Thus me = m′g, and so me = m′mge2. Since M is
closed under composition and e and e2 are in E , 〈m〉 = 〈m′mg〉. Therefore
〈m〉 ⊆ 〈m′〉. The Condition (SW2) is proved similarly. Hence E ⊥swM and
so X has semi weak (E ,M)-factorizations.

It is known (see [4]) that, for a right factorizationM, which is closed un-
der composition, there is an E such that (E ,M) is a factorization structure.
However, for a quasi right factorizationM, which is closed under composi-
tion, in general, there is no E such that (E ,M) is a semi weak factorization
structure.

Example 2.12. Let X be the category consisting of the following objects
and morphisms only:

X : A
f //

g
// B

h // C

with hf = hg. The classM = {1A, 1B, 1C , h}, is closed under composition
and Iso(X ) ⊆M. It is easy to see that X has quasi rightM-factorizations.
We claim that there is not a class E of morphisms in X such that X has
semi weak (E ,M)-factorizations. Otherwise, if E is such a class, since f can
be factored as f = 1Bf , with 1B ∈ M, f must be in E . Similarly, g ∈ E .
On the other hand, 〉hf〈 = 〉hg〈 ⊆ 〉g〈 and h ∈ M. Since E ⊥sw M, then
〉f〈 ⊆ 〉g〈, which is a contradiction.

3 A characterization of semi weak factorization structure

In [9] a one to one correspondence between certain classes of quasi right
factorization structures and 2-reflective subobjects of a predefined object in
the category of laxed preordered valued presheaves, Lax(PrOrdX

op
), has
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been studied. In [7] it has been shown that quasi left factorization struc-
tures correspond to subobjects of predefined objects in Lax(PrOrdX

op
). It

has further been shown that this correspondence is one to one when quasi
left factorization structures are restricted to the so called QLF-codomains.
In this section we give a characterization of semi weak orthogonality, factor-
ization of morphisms, and semi weak factorization structure in a category
X in terms of certain natural isomorphisms.

Denote by PrOrd the category of preordered sets and order preserving
functions. Throughout this section suppose that X has pullbacks and Ps :
X op // PrOrd the functor defined by

X

f

��

� // Ps(X) = ({〈g〉|g ∈ X/X},⊆)

Y � // Ps(Y ) = ({〈h〉|h ∈ X/Y },⊆)

Ps(f)

OO

where Ps(f)(〈h〉) = 〈h∗f 〉 and h∗f is a pullback of h along f , and Pc :

X op // PrOrd the functor defined by

X

f

��

� // Pc(X) = ({〉g〈|g ∈ X/X},⊆)

Y � // Pc(Y ) = ({〉h〈|h ∈ Y/X},⊆)

Pc(f)

OO

where Pc(f)(〉h〈) = (〉hf〈).
In what follows X2 is the class {(f, g)|codm(f) = dom(g)} of all com-

posable morphisms in X .

Definition 3.1. For a class A of morphisms in X we say A satisfies the
pullback condition, if for every cospan f and g, with g in A, there exists a
pullback of g along f belonging to A.

The following example shows the existence of a class of morphisms that
satisfies the pullback condition, which is not stable under pullbacks.

Example 3.2. (i) Let C be a category with finite products and M be the
class of all pr2, the second factor projection. ThenM satisfies the pullback
condition. To prove this let f : A // B in C and pr2 : C ×B // B in
M be given. It is easy to see that the diagram
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C ×A 1C×f //

pr2
��

C ×B
pr2
��

A
f // B

is a pullback.
(ii) Let K be a field, R be a finite dimensional K-algebra and C be a

full subcategory of RMod, of left R-modules, whose objects are finitely
generated R-modules. LetM be the class of all morphisms in C which factors
through a non isomorphism pr2. Then M satisfies the pullback condition.
To prove this let f : M // K in C and m : N × L // K inM be given.
Thus m = gpr2 such that pr2 : N × L // L is a non isomorphism. By (i)
we have the pullback diagram

N × P 1N×g−1(f) //

pr′2
��

N × L
pr2
��

P
g−1(f) //

f−1(g)
��

L

g

��
M

f // K

The morphism pr′2 is not an isomorphism, because otherwise, since every
module is finite dimensional as a K-vector spaces, dimKN = 0 and so N = 0.
Therefore pr2 is an isomorphism, and this is a contradiction.

First, we characterize semi weak orthogonality in two steps.
Step 1: Suppose E andM are classes of morphisms in X which satisfy

the pullback condition. Define the equivalence relation ∼s on X2 as

(f, g) ∼s (f ′, g′) if and only if 〈gf〉 = 〈g′f ′〉 and 〈g〉 = 〈g′〉.

Define the functor Rs : X op // PrOrd by

Y

h

��

� // Rs(Y ) = ({[(e′,m′)]s|e′ ∈ E ,m′ ∈M/Y, (e′,m′) ∈ X2},6s)

X � // Rs(X) = ({[(e,m)]s|e ∈ E ,m ∈M/X, (e,m) ∈ X2},6s)

Rs(h)

OO
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where the relation 6s is defined as

[(e,m)]s 6s [(e′,m′)]s if and only if 〈me〉 ⊆ 〈m′e′〉 and 〈m〉 ⊆ 〈m′〉;
and Rs(h)([(e,m)]s) = [(e∗,m∗h)]s, where m∗h and e∗ are obtained by the
following pullback diagrams

• e //

p.b.

• m //

p.b.

X

•

OO

e∗
// •

OO

m∗h
// Y.

h

OO

Also the family rs : Rs
// Ps defined, for each X, by

(rs)X([(e,m)]s) = 〈me〉

can be easily verified to be a natural transformation.

Lemma 3.3. Suppose that E and M are classes of morphisms in X that
satisfy the pullback condition, M is closed under composition and for all
morphisms f in X there exist morphisms mf ∈ M and ef ∈ E such that
f = mfef . Then for all m,m′ ∈ M and for all e ∈ E, 〈me〉 ⊆ 〈m′〉 implies
〈m〉 ⊆ 〈m′〉 if and only if rs is a natural isomorphism.

Proof. To prove the necessity, the family α : Ps // Rs defined, for each
X, by αX(〈f〉) = [(ef ,mf )]s is a natural transformation. It is easy to see
that αrs = 1 and rsα = 1 so rs is a natural isomorphism. To prove the
sufficiency, suppose that β : Ps // Rs is the inverse of rs and m,m′ ∈M
and e ∈ E are given such that 〈me〉 ⊆ 〈m′〉. Thus there exists a morphism
k such that me = m′k and so rs([(e,m)]s) = rs([(ek,m

′mk)]s), where k =
mkek. Therefore (e,m) ∼s (ek,m

′mk) and hence 〈m〉 = 〈m′mk〉⊆ 〈m′〉.

Step 2: let E and M be classes of morphisms in X such that M is
closed under composition, for all morphisms f in X there exist morphisms
mf ∈M and ef ∈ E such that f = mfef and we have

(a) for all g ∈ E , 〉eg〈 = 〉g〈 ;
(b) 〉f〈 ⊆ 〉g〈 implies 〉ef 〈 ⊆ 〉eg〈 .
By a similar fashion, define the equivalence relation ∼c on X2 as

(f, g) ∼c (f ′, g′) if and only if 〉gf〈 = 〉g′f ′〈and〉f〈 = 〉f ′〈
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and define Rc : X op // PrOrd by

Y

h

��

� // Rc(Y ) = ({[(e′,m′)]c| e′ ∈ Y/E ,m′ ∈M, (e′,m′) ∈ X2},6c)

X � // Rc(X) = ({[(e,m)]c| e ∈ X/E ,m ∈M, (e,m) ∈ X2},6c)

Rc(h)

OO

where the relation 6c is defined as

[(e,m)]c 6c [(e′,m′)]c if and only if 〉me〈 ⊆ 〉m′e′〈 and 〉e〈 ⊆ 〉e′〈;

and Rc(h)([(e,m)]c) = [(e
eh
,mm

eh
)]c, where eh = m

eh
e
eh

such that m
eh
∈

M and e
eh
∈ E . It is easy to see that Rc is a lax functor.

Also the family rc : Rc
// Pc defined, for each X, by

(rc)X([(e,m)]c) =〉me〈

can be easily verified to be a natural transformation.

Lemma 3.4. Suppose that E and M are classes of morphisms in X which
are closed under composition. Also suppose that for all morphisms f in X
there exist morphisms mf ∈M and ef ∈ E such that f = mfef and we have

(a) for all g ∈ E, 〉eg〈 = 〉g〈; and
(b) 〉f〈 ⊆ 〉g〈 implies 〉ef 〈 ⊆ 〉eg〈 .
Then for all e, e′ ∈ E and for all m ∈M, 〉me〈⊆〉e′〈, implies 〉e〈⊆〉e′〈 if

and only if rc is a natural isomorphism.

Proof. The proof is similar to Lemma 3.3.

Proposition 3.5. Let E and M be classes of morphisms in X that satisfy
the pullback condition are closed under compositions. Also for all morphisms
f in X there exist morphisms mf ∈M and ef ∈ E such that f = mfef and
we have

(a) for all g ∈ E, 〉eg〈 = 〉g〈; and
(b) 〉f〈 ⊆ 〉g〈 implies 〉ef 〈 ⊆ 〉eg〈.
Then E ⊥swM if and only if rs and rc are natural isomorphisms.

Proof. It follows from Lemmas 3.3 and 3.4.
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Next we give a characterization of the factorizations of morphisms. To
this end, assume E and M are classes of morphisms in X that satisfy the
pullback condition, E is closed under composition, and Iso(X ) ⊆ E , where
Iso(X ) is the class of isomorphisms in X . Suppose that f ∈ X/X is given.
Since E is closed under composition, if g ∈ 〈f〉E , then 〈g〉E ⊆ 〈f〉E . Define
Ps
E : X op // PrOrd by

Y

h

��

� // Ps
E(Y ) = ({〈g〉E |g ∈ X/Y },⊆ )

X � // Ps
E(X) = ({〈f〉E |f ∈ X/X},⊆ )

PsE(h)

OO

where Ps
E(h)(〈f〉E) = 〈h∗f 〉E .

Now define the equivalence relation ∼E on X2 as follows

(f1, g1) ∼E (f2, g2) if and only if 〈g1f1〉E = 〈g2f2〉E .

We denote the equivalence class of (f, g) by [(f, g)]E .
Define the functor P2E : X op // PrOrd as

Y

h

��

� // P2E (Y ) = ({[(f2, g2)]E |(f2, g2) ∈ X2, g2 ∈ X/Y },6)

X � // P2E (X) = ({[(f1, g1)]E |(f1, g1) ∈ X2, g1 ∈ X/X},6)

P2E (h)

OO

where the relation 6 is defined by

[(f1, g1)]E 6 [(f2, g2)]E if and only if 〈g1f1〉E⊆ 〈g2f2〉E
and P2E (h)([(f, g)]E) = [(f∗h , g

∗)]E , where f∗h and g∗ are obtained by the
pullback diagrams

• g //

p.b.

• f //

p.b.

X

•

OO

g∗
// •

OO

f∗h
// Y.

h

OO

Thus the family ∗E : P2E
. // Ps

E defined, for each X, by

(∗E)X ([(f, g)]E) = 〈gf〉E
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is a natural transformation.
Since E andM satisfy the pullback condition, R

(E,M)
: X op // P rOrd

defined by

Y

h

��

� // R
(E,M)

(Y ) = ({[(e′,m′)]E |(e′,m′) ∈ X2, e
′ ∈ E ,m′ ∈M/X},6)

X � // R
(E,M)

(X) = ({[(e,m)]E |(e,m) ∈ X2, e ∈ E ,m ∈M/X},6)

R
(E,M)

(h)

OO

and R
(E,M)

(h)([(e,m)]E) = [(m∗h, e
∗)]E is a subfunctor of P2E . So we have

the natural transformation

j
(E,M)

: R
(E,M)

� � . // P2E .

Now define
∗
(E,M)

= ∗E j
(E,M)

: R
(E,M)

. // Ps
E

so that (∗
(E,M)

)
X

([(e,m)]E) = 〈me〉E .

Proposition 3.6. Suppose E and M are classes of morphisms in X which
satisfy the pullback condition, E is closed under composition, and Iso(X ) ⊆
E. Then for all morphisms f ∈ X there exist morphisms m ∈M and e ∈ E
such that f = me if and only if ∗E,M is a natural isomorphism.

Proof. First suppose that ∗E,M is a natural isomorphism. Let f ∈ X/X be
given. Suppose that (∗

(E,M)
)−1
X

(〈f〉E) = [(e1,m)]E and so 〈f〉E = 〈me1〉E .
Since f ∈ 〈f〉E , there exists e2 ∈ E such that f = me1e2. Set e = e1e2.
Since E is closed under composition, e ∈ E . Thus f = me. For the proof
of the converse, suppose for all f ∈ X there exist morphisms ef ∈ E and
mf ∈ M such that f = mfef . The mapping r : Ps

E
. // R

(E,M)
defined

for all X in X by rX (〈f〉E) = [(ef ,mf )]E is a natural transformation and
∗
(E,M)

r = 1PE
. It easily follows that r∗

(E,M)
= 1R

(E,M)
. So r is a natural

isomorphism.

Finally, the following theorem gives a characterization of semi weak fac-
torization structures, under certain conditions.
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Theorem 3.7. Suppose E andM are classes of morphisms in X that satisfy
the pullback condition, are closed under composition, and Iso(X ) ⊆ E. Then
(E ,M) is a semi weak factorization structure in X if and only if rs, rc, and
∗E,M are natural isomorphisms.

Proof. Follows from propositions 3.5 and 3.6.

4 Examples

In this section we give several examples of semi weak factorization structures
which are not weak factorization structures.

Example 4.1. Consider the category Set of sets. Let E be the class of
monomorphisms andM be defined by

(i) each pr2, the second factor projection, is inM;
(ii) for each m1,m2 ∈M, m2m1 ∈M, whenever m2m1 is defined;
(iii) the classM is generated by (i) and (ii).
For an arbitrary function f : X // Y we have f = pr2〈1, f〉. Since

M is in the class of epimorphisms, E ⊥w M. Since IsoX * M, this
factorization system is not weak.

Example 4.2. Consider the category RMod such that R is a left semisim-
ple ring. Let E and M be as in Example 4.1. For an arbitrary R-module
homomorphism f : X // Y we have f = pr2〈1, f〉. Since every module is
injective and projective, E ⊥sw M. Since IsoX * M, this factorization
system is not weak.

Example 4.3. Let K be a field and R be a finite dimensional K-algebra,
left injective R-module, and semihereditary ring, see [12, Definition 39.1].
Let P be a full subcategory of RMod whose objects are finitely generated
projective R-modules. Let E be the class of monomorphisms in P andM be
the class of those morphisms in P which factor through a non isomorphism
pr2. For each momorphism f : M // N in P we have
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M��

α

��

s1
��

f //

///

N

s2
��

F1

r1

OOOO

F2

r2

OOOO

F1 × F2

β

DD DD

where F1 and F2 are finitely generated free R-modules, r1s1 = 1M , r2s2 =
1N , α = 〈s1, s2f〉, and β = r2pr2. Thus f = βα, α ∈ E and β ∈ M.
Since every object in P is also injective, E ⊥sw M. Since IsoX *M, this
factorization system is not weak.

Example 4.4. Consider the category Top of topological spaces. Let M
be the class of initial maps and E be the class of all continuous maps with
identity as the underlying map. Suppose that f : X // Y in Top is given.
We have

(X, τX )

1X %%
///

f // (Y, τY )

(X, τ
f
)

f

::

where τ
f
is the induced topology by f on X. Now suppose that there is

m,m′ ∈ M and e ∈ E such that 〈me〉 ⊆ 〈m′〉. So there is a morphism λ
such that me = m′λ. It is easy to see that λ′ = λ in the diagram

(X, τX )

1X=e %%

λ //

///

(X, τ
m′ )

m′

��

(X, τm)

m
%%

λ′
99

///

(Y, τY )

makes the triangles commute and is in Top. So 〈m〉 ⊆ 〈m′〉 . The proof
of the second part is similar. Hence E ⊥sw M. Since IsoX * E , this
factorization system is not weak.
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Lemma 4.5. If (E ,M) and (E ,M′) are weak factorization systems in X ,
thenM =M′

Proof. Let m′ ∈ M′ be given. Thus, there exist e ∈ E and m ∈ M such
that m′ = me and hence there exists a morphism d such that de = 1 and
m′d = m. So d is a retraction and m′d ∈ M. Therefore [1, Observation
1.3 (2b′)] implies that m′ ∈ M and hence M′⊆M. Similarly, we have
M⊆M′.

Example 4.6. Let C be a closed model category whose objects are cofibrant-
fibrant. The pair (E ,M) of morphisms in C, where E is the class of cofi-
brations andM is the class of weak equivalences which are retractions form
a semi weak factorization structure. Because, by [5, Definition 7.1.3] every
morphism f in C has a factorization f = pj, where j is a cofibration and
p is a trivial fibration and by [5, Proposition 7.6.11 (2)] p is a retraction.

It is easy to see that M = E �
M . To prove E =

E
�M suppose that in the

commutative diagram

A

///

i //

i′
��

B

w
��

C v
// D

i, i′ ∈ E , w ∈M, and v is an arbitrary. By [5, Proposition 7.2.6]

B
w // D = B

j //W
p′ // D

where j is a trivial cofibration and p′ is a trivial fibration. Let M′ be the
class of trivial fibrations. So by [5, Definition 7.1.3], we have E ⊥w M′.
Thus, there exists a morphism C

d′ //W such that p′d′ = v and d′i′ = ji.
By [5, Proposition 7.6.11 (1)] there exists a morphismW

r // B such that

rj = 1B. Put d := rd′, so di′ = i. Therefore E =

E
�M and hence, by

Proposition 2.9, we have (E ,M) is a semi weak factorization structure. This
factorization system is not weak. Because otherwise, since by [1, Remark 3.6]
(E ,M′) is a weak factorization system, Lemma 4.6 implies that M = M′.
However this is not the case, for instance in Top let E = {0} × I⋃ I ×
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{0} (with the topology induced by R2), B = I × {0} and p : E // B the
projection on the first factor. Then p is not a fibration, see [10, Exercises
2.2.9]. Therefore p /∈M′ but p ∈M.

Example 4.7. Examples 4.1 to 4.3 satisfy the conditions of the Proposi-
tion 2.7. Thus in the corresponding partial morphism categories the classes
E ′ and M′ constitute a semi weak factorization structures which are not
weak factorization structures, because otherwise (E ,M) is a weak factoriza-
tion structure which is a contradiction.

Example 4.8. Let X be a connected category with coproducts. Then

E = { A ν1 // A
∐
B | ν1 is a coproduct inclusion to the first factor}

and M any collection of retractions constitute a semi weak factorization
system. Since IsoX * E , this factorization system is not weak.

Example 4.9. Consider the category Set of sets. Define the classes E and
M as

E = { X f // X × Y | X f // Y is a morphism in Set and f = 〈1, f〉}
M = { X × Y

pr2 // Y | pr2 is the second factor projection}.

For an arbitrary function f : X // Y we have f = pr2〈1, f〉. Since M is
in the class of epimorphisms, E ⊥wM. Since IsoX *M, this factorization
system is not weak.

Example 4.10. Consider the category Ab of abelian groups. Define the
classes E andM as

E = { G e // G×G | e(x) = (x, e), where e = 〈1, e〉}
M = { G×G f // H | f factors through the operation ? of G}.

For an arbitrary morphism f : G // H , we have f = (f?)e. Suppose that
f, g ∈ M and e ∈ E are given such that 〈fe〉 ⊆ 〈g〉, thus fe = gh. So we
have

G
h //

e
��

K ×K
g

��
///

G×G
f

//

d
99

H
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where d = h? and ? is the operation of G.
Now suppose that f ∈M and e ∈ E are given such that 〉fe〈 ⊆ 〉e〈. Thus

fe = ke. So we have

G
e //

///e
��

G×G
f
��

G×G
k

//
d

99

H

where d = 1G×G. Therefore, (E ,M) constitutes a semi weak factorization
structure for Ab. Since IsoX *M, this factorization system is not weak.

Example 4.11. Let X be a pointed category, see [2]. Fix a non terminal
object B ∈ X . Define the classes E andM as

E = { X f // Y × Y | X f // Y is a morphism in X and f = 〈f, f〉}

M = { X ×A pr1 // X | X 6= B} ⋃ { B × C pr1 // B |
C is not terminal object}

where pr1 is the first factor projection. Every morphism f : X // Y in
X can be factored as f = pr1f. To show (E ,M) constitutes a semi weak
factorization structure for X , suppose pr1, pr

′
1 ∈M and f ∈ E are given such

that 〈pr1f〉 ⊆ 〈pr′1〉. Thus pr1f = pr′1u. So we have

X
u //

f
��

Y × Z
pr′1
��

///

Y × Y pr1
//

d
99

Y

where d is the unique morphism making the following diagram

Y Y × Zpr′1oo
pr′2 // Z

Y × Y
pr1

cc

d

OO

h

;;
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commutative and h is a zero morphism. Now suppose that f, g ∈ E and
pr1 ∈M are given such that 〉pr1f〈 ⊆ 〉g〈. Thus pr1f = vg. So we have

X
f //

///g

��

Y × Y
pr1
��

Z × Z v
//

d

99

Y

where d is the unique morphism making the diagram

Y Y × Ypr1oo pr2 // Y

Z × Z.
v

cc

d

OO

v

;;

commutes. Since pr1f = vg we have f = vg. Also pr1dg = vg = f and
pr2dg = vg = f , hence dg = f. Since IsoX *M, this factorization system
is not weak.

Example 4.12. In the category Grp, let E andM be the following classes
of morphisms:

E = { G f // G×H | G f // H is a map and f =
〈e, f〉, where e is the zero map}

M = { A×B pr2 // B | pr2 is the second factor projection}.

For an arbitrary morphism f : G // H , we have f = pr2f. Suppose that
g ∈ E and pr2, pr

′
2 ∈M are given such that 〈pr2g〉 ⊆ 〈pr′2〉, thus pr2g = pr′2u.

So the map d = 〈e, pr2〉 is a diagonal for the following diagram.

G
u //

g

��

H ×K
pr′2
��

///

G×K pr2
//

d
99

K.

So the condition (SW1) holds.

Now let f, g ∈ E and pr2 ∈ M such that G
f // K , g : G // H and

〉pr2f〈 ⊆ 〉g〈 be given. Thus pr2f = vg. So the map d = 〈pr1, v〉 is a diagonal
for the diagram
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G
f //

///g

��

G×K
pr2
��

G×H v
//

d

99

K

So the condition (SW2) holds. Therefore, (E ,M) is a semi weak factorization
system. Since IsoX *M, this factorization system is not weak.

Remark 4.13. Note that examples 4.1 to 4.4 satisfy the conditions of The-
orem 3.7.
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