Categories and

General Algebraic Structures +
win Applications

Volume 11, Special Issue Dedicated to Professor George A. Grétzer,
July 2019, 19-31.

WWW.CGASA.ir

The function ring functors of pointfree
topology revisited

Bernhard Banaschewski

Dedicated to George Grétzer

in recognition of his many contributions to mathematics

Abstract. This paper establishes two new connections between the famil-
iar function ring functor R on the category CRFrm of completely regular
frames and the category CRoFrm of completely regular o-frames as well
as their counterparts for the analogous functor 3 on the category ODFrm
of 0-dimensional frames, given by the integer-valued functions, and for the
related functors R* and 3* corresponding to the bounded functions. Fur-
ther it is shown that some familiar facts concerning these functors are simple
consequences of the present results.
For general background, see 2] and its references.

The function ring functor given by the real-valued continuous functions
on frames is considered here as

R: CRFrm — RFrm

with the categories of completely regular frames and of /-rings isomorphic to
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some RL, L € CRFrm, (with all their ¢-ring homomorphisms) as domain
and codomain, respectively, and its left adjoint & : RFrm — CRFrm is
then provided by the familiar correspondence A — KA where the latter
is the (indeed completely regular) frame of archimedean kernels of A. In
addition, we then have the adjunction maps

At A—RRA, aw a, alp,q) = ((a—p)t Alg—a)T)

where (-) indicates the archimedean kernel of A generated by - and p and q
are the elements of A corresponding to p,q € Q, and

pr : RRL — L, J — \/{coz(’y) | v € J},
with the familiar adjunction identities
(Rpr)mp =idnr,  and  pga(RAa) = idga

for all L € CRFrm and A € RFrm. It should be noted that, in this
setting, all A4 are isomorphisms: for any A € RFrm, A = RL for some
L € CRFrm, and the Ay are isomorphisms by the adjunction identities.

On the other hand, we consider the functor Coz: CRFrm — CRoFrm
with its left adjoint $) : CRoFrm — CRFrm where CRoFrm is the cate-
gory of completely regular o-frames, Coz L is the sub-o-frame of L given by
its cozero elements, and $S' is the frame of o-ideals of S € CRoFrm,
with the obvious effects on the maps involved. Here, the adjunction maps
are

s :S — CozHS, a—»la={se€S|s<a},
and
ng : HCozL — L, J — \/J (in L),

such that

(Cozn)mCogr = 1dCoy,  and  1gs(H7Ts) = idgs.

Concerning CRFrm — CRoFrm, recall that a o-frame S is completely
regular if each a € S is a countable join of elements s << a where << is the
usual strong inclusion, and Coz L is well known to be of that kind.

Next, entirely parallel to the above, we shall consider the functor 3 :
ODFrm — 3Frm where 3L is the usual /-ring of integer-valued continuous
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functions on L and 3Frm the present analogue of SAiFrm. Further, 3 has
a left adjoint, also provided by the archimedean kernels and denoted by
R : 3Frm — ODFrm, based on the fact that the principal archimedean
kernels of the 3L are complemented because the 3L satisfy the Z-identity
YA =7)<0.

The adjunction maps in the present situation are

ka:A— 384, a—a, alm)={((1—|m—a|)") (where m = m1)
and
v : R3L — L, J+— \/{coz(’y) | v e J},

with identities analogous to the case of fR; also, all k4 are isomorphism here
by the nature of 3Frm.
Now, the counterpart of Coz in the present situation is the functor

S : ODFrm — ODoFrm, L+ SL,

where the latter is the sub-o-frame of L generated by its complemented
elements, with formally the same left adjoint as in the earlier situation,

$H:0DocFrm — ODFrm,
and the adjunction maps
ts: S — 8SHS, ar—la,

and

0r:HSL — L, J \/J (in L),

subject to the exact analogues of the adjunction identities in the case of Coz.
The following familiar facts will be used later on:

(I) puz and vy, are isomorphisms if and only if L is Lindelof.

(IT) For any Lindel6f L € CRFrm, its cozero elements are exactly its
Lindeldf elements; similarly, for any Lindel6f L € ODFrm the a € SL are
exactly the Lindeldf elements of L.

(III) n, : $ Coz L — L is the Lindeldf coreflection map in CRFrm and
the same holds for 07, : HSL — L in ODFrm.
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Proposition 1. Coz & : RFrm — CRoFrm is a category equivalence with
mverse RS).

Proof. Concerning Coz 8RS), there is the composite homomorphism

ﬂ_fl
Coz 597155 COH5 Coz 68 ™ §

for each S € CRoFrm, where Coz j14g is an isomorphism because this holds
already for pgg by (I) since $S is Lindelof, and

wg: S — Coz$HS, a—la,

is an isomorphism by (II) as the Lindel6f elements of S are clearly the
principal ideals. Hence Coz SR = Id since all maps involved here are
natural in S. Similarly, for R Coz R, one has the analogous situation

R Coz ARRL “ 8- RRRL 7% R

where Rngeyy, is an isomorphism since this holds for nggpz, by (IIT) given that
RKARL is Lindelof, and Ry, is an isomorphism by the adjunction identities
for R and R. O

Remark 1. As an obvious alternative of the above proof, one might note
the following where A is the category of completely regular Lindel6f frames.
Given the familiar facts that the adjunction maps A4 and pj are isomor-
phisms for A € RFrm and L € A and every Ruz, is an isomorphism, R
induces a category equivalence A — SRFrm with inverse induced by & On
the other hand, there are the functors

Coz: A - CRoFrm, L — Coz L,

and

H:CRoFrm - A, S— $5S,
with the natural isomorphisms
n:HCozL — L, Jw \/J (in L)

and
g : S — Coz$HS, a—la,
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which show that Coz provides a category equivalence with inverse given by
$, and combining the two then proves the proposition. Maybe this two-
step approach has a certain appeal, but somehow the more direct argument
seemed preferable here.

The following adds some detail concerning the situation in Proposition
1.

Proposition 2. For any L € CRFrm, the natural homomorphism Coz puy, :
Coz RRL — Coz L is an isomorphism.

Proof. To begin with, note that pur : RRL — L and ng, : H Coz L — L are
both the Lindeldf coreflection map in CRFrm, by (I) and (III) respectively,
so that there exists a natural isomorphism Ay, : RRL — $ Coz L such that
wr, = nrhr and hence Coz ur, = (Coznr)(Cozhy,); on the other hand,

Coz($HCoz L) ={lc|ce Coz L}

by (II), showing that Cozny, is an isomorphism, and the same then holds for
Coz uup,. O

Corollary 1. (i) For any L,M € CRFrm, RL = RM if and only if
Coz L = Coz M.

(ii) For any h : L — M in CRFrm, Rh is an isomorphism if and only
if Coz h is an isomorphism.

Proof. (i) For any isomorphism ¢ : RL — RM, the proposition trivially
provides the isomorphism

(Coz pupr ) (Coz Re) (Coz pup) L - Coz L — Coz M.

Conversely, given any isomorphism o : Coz L — Coz M, the corresponding
isomorphism R$Ho : RHCoz L — RHCoz M determines an isomorphism
RL — RM as follows: since the frame of reals is Lindelof, (III) implies
any Rnr : RHCoz L — KL is onto and hence an isomorphism so that one
obtains

(Rnar) (R$H0)(Rn) L : RL — RM.
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(ii) Any h : L — M as given determines the commuting square

Coz ARL —CO28%h_ o amar

Coz pLi iCOZ ny;
Coz L Coz M

Cozh

and if $Rh is an isomorphism this trivially makes Coz h an isomorphism by
the proposition. On the other hand, given the latter, each of the following
is also an isomorphism

Coz KR, KRh, RKRh, Rh

the first by the above square; the second by acting ) on the first and then
using the isomorphisms 7gnz, and ngnas (note (II1)); the third trivially now;
and the fourth because SRy, and Ruys are isomorphisms by the adjunction
identities for SR and R. O

Remark 2. The above (ii) appeared first in [1].

Proposition 3. SR : 3Frm — ODoFrm is a category equivalence with
nverse 35).

Proof. Of course, this turns out to be entirely parallel to the proof of Propo-
sition 1, now involving the maps

SR3INS — SHS — S

Sv —1
HS lg

and
3HSKRIL — 3R3L — 3L
30831 3L,

for S € ODoFrm and L € ODFrm, respectively, with identically the
same reasoning, where the counterpart of Coz is the functor S introduced
earlier. Specifically, then, the following are isomorphisms: vgg by (I) since
$S is Lindelof, vg by (II), g3z, by (III) as K3 L is Lindeldf, and 3vy, by the
adjunction identities for 3 and 8. O
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Remark 3. Exactly analogous to Remark 1, there is an alternative two-
step argument possible here, using the equivalence of the category of 0-
dimensional Lindelof frames with 3Frm and with ODoFrm, provided by
the pairs of adjoint functors (3, &) and (S, ), respectively.

Proposition 4. For any L € ODFrm, the natural homomorphism Svy, :
SKR3IL — SL is an isomorphism.

Proof. In the present setting, vy, : R3L — L and 0r, : HSL — L are both
the Lindelof coreflection map in ODFrm, by (I) and (III) respectively, and
the same approach applied earlier to py and 7y, then shows that Sy is an
isomorphism. O

Corollary 2. (i) For any L, M € ODFrm, 3L = 3M if and only if SL =
SM.

(ii) For any h : L — M in ODFrm, 3h is an isomorphism if and only
if Sh is an isomorphism.

Proof. Again, this is formally the same as the proof of its counterpart for
R, now with
Coz, R, Cozpur, and ng, : HCoz L — L

replaced by
S, 3, Syp, and 0, : HSL — L

where 367, is an isomorphism by (III).
In particular, regarding (i), any isomorphism ¢ : 3L — 3M trivially
determines the isomorphism

Svar(SRe)(Svr) ™! : SL — SM.

Conversely, for any isomorphism o : SL — SM, the isomorphism 3% :
39SL — 39SM provides an isomorphism 3L — 3M since 36y, and 36,
are isomorphisms.

Regarding (ii), any h : L — M as given determines the commuting

square
SR3h

SRKR3L SR3M
SVLl/ iSVM
SL SM

Sh
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and since the downward maps are isomorphisms Sh is an isomorphism when-
ever 3h is. Conversely, given the former, each of the following is an isomor-
phism

SKR3h, K3h, 3R3h, 3h

the first by the above square, the second by acting $ on the first and using
the isomorphisms fg37, and fg3ps (note (III)), the third trivially by acting 3
on the second, and the last because 3vy, and 3v); are isomorphisms by the
adjunction identities for 3 and 8. O

Remark 4. The above (ii) appeared in [3].

For the case of R*, some further entities will be used besides the present
counterpart SR*Frm of the earlier AFrm:

the category K, of compact completely regular o-frames;

the compact coreflection in CRFrm; given by B; : L — L where
BL = CRJL, the largest completely regular subframe of the ideal frame JL
of L, with S1(J) =V J (in L); and

the obvious natural isomorphism gr : REL — R*L provided by the
image factorization of RS, : RBL — RL which determines the composite

7L RR'L — SRPFL— PL,
(Rop) 1 MBL

an isomorphism by the nature of g5, and the compactness of SL.

Now, the present analogue of Proposition 1 is

Proposition 5. Coz8& : WFrm — K, is a category equivalence with in-
verse R $).

Proof. Of course RR* L is compact, as shown by the above 77, so that Coz &
indeed maps R*Frm into K,. Further, Coz RR*$ = Coz$ because the
map RR*HS — HS provided by the adjunction maps of R and K is an
isomorphism for any S € K, because S is compact by the compactness
of S, and since Coz$HS = S as in the case involving R it follows that
Coz RR*$H = Id. Similarly, R*$H Coz K& = R*R because $H Coz R = R, and
since R*R = Id by the definition of SR*Frm it follows that R*$ Coz K = Id
as well. O
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Remark 5. As in the previous two cases, the present result can also be
obtained by a natural two-step argument: for the category K of compact
completely regular frames, one has the two equivalences K = R*Frm and
K = K, produced by the pairs of adjoint functors (R*, &) and Coz,9),
respectively.

Next, regarding the present analogue of Proposition 2, the above isomor-
phism 77, : RR*L — BL immediately implies

Proposition 6. For any L € CRFrm, the natural homomorphism Cozry :
CozBR*L — CozBL is an isomorphism.

Remark 6. (i) By way of comparison with Proposition 2, it may be worth
noting that Coz 8L is the compact coreflection of Coz L in CRoFrm with
coreflection map Cozfr : CozfBL — CozL: clearly, for arbitrary S €
CRoFrm, that map is

Coz HS — Coz$HS —>15;

Coz Bgs (ms)~

on the other hand, in CRFrm,

6HCozL — $HCozL — L
BaCozL nL
is readily seen to be the compact coreflection map, providing a natural iso-
morphism 8% Coz L — SL which then implies the claim.

(ii) Concerning 77, it should be noted that Sr7, = ppRir, for the iden-
tical embedding iy : SR*L — RL, and that the existence of an isomorphism
RR*L — BL which satisfies this is a familiar fact, but this simple way of
presenting it seems to be new.

Corollary 3. (i) For any L,M € CRFrm, R*L = R*M if and only if
CozBL = CozBM.

(ii) For any h: L — M in CRFrm, R*h is an isomorphism if and only
if CozBh is an isomorphism.

Proof. (i) For any isomorphism ¢ : R* L — 9R* M, the isomorphism 7y (R¢)(17) 7t :
BL — BM induces an isomorphism Coz L — Coz M. Conversely, given
any isomorphism o : Coz L — Coz M, the corresponding isomorphism
$Ho : HCozBL — $HCoz M shows BL = BM, given the isomorphisms ngr,
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and ngy by (III), and this in turn implies SR*L = R*M by the natural
isomorphism gy, : RBL — R* L.
(ii) Any h: L — M as given determines the commuting square

Coz AL —COZRRh_ ) aopens

COZTL\L lCOZT]\J
Coz SL Coz M

Coz sh

where the downward maps are isomorphisms by the proposition, and if $R*h
is an isomorphism this trivially implies the same for Coz 8h. On the other
hand, given the latter, each of the following is also an isomorphism

Coz RR*h, RR*h, RRRVR h, RBh, R*h

the first by the above square, the second by acting $) on the first and using
the isomorphisms ngn+7 and ngn+ps (note (I11)), the third trivially now, the
fourth by the natural isomorphism 77, : RR*L — SL, and the last by the
natural isomorphism gy, : REL — R*L and its version for M. O

Remark 7. The above (ii) corresponds to a result in [1].

Finally, the situation regarding 3* can certainly be treated by mod-
ifying the arguments used above for J8*, now involving the compact 0-
dimensional o-frames, the compact coreflection map (7 : (L — L in the
category ODFrm, and the natural isomorphism 3¢ L — 3*L determined by
the image factorization of 3(; : 3(L — 3L. This will produce the exact
counterparts for 3* of the above result for R*, to be left as an exercise. In-
stead, we shall use an interesting alternative approach based on the familiar
functor B from ODFrm to the category BAlg of Boolean algebras, taking
each L € ODFrm to the Boolean algebra BL of its complemented elements,
and its familiar left adjoint J : BAlg — ODFrm, A — JA, the ideal frame
of A, with the adjunction maps

(L:IBL— L, J—\/J (in L)

and
0a: A= BJA, a—la={se A|s<a}.
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Note that (7, is in fact the compact coreflection map in ODFrm and JBL
is often denoted (L. Further. Q% : 3CL — 3*L and

7'2 = VCL(RQ%)_I : R3'L — (L

will be the present analogues of the earlier isomorphisms ¢y, and 7.
Now, the relevant results are as follows.

Proposition 7. BR : 3*Frm — BAIlg is a category equivalence with in-
verse 3J.

Proof. Concerning BR3J, there is the composite homomorphism

BR3JA — BJA — A
Brja (6a)~!
for any A € BAIlg, where the adjunction map v34 : R3JA — JA is an
isomorphism by the compactness of JA, and since d4 : A — BJA is obviously
an isomorphism this provides the isomorphism (54)~!, showing in all that
BR3J = Id. Similarly, 33JBR = Id because each map in the sequence
3IJBR3'L — 3R3L—3(L— 3L
R3*L 379 3
is an isomorphism for any L: the first by the compactness of £3*L and the
other two obviously. d

Remark 8. Again, there is a natural two-step version of this proof, showing
in this case that the category of compact 0-dimensional frames is equivalent
to 3*Frm as well as to BAlg, using the pairs of adjoint functors (3, 8) and
(B,J). It might be added here that the latter equivalence is, of course, the
pointfree version of the classical Stone Duality.

In the following, v; = vrRjr : R3*L — L for any L € ODFrm, where
jr : 3"L — 3L is the identical embedding.

Proposition 8. For any L € ODFrm, the natural homomorphism Bvy :
BR3*L — BL is an isomorphism.

Proof. For any a € BL and its characteristic function x, € 3*L, v} ((xa)) =
coz(xq) = a where (-) indicates the archimedian kernel in 3*L generated by
-, and since (x,) € BR3*L (as noted earlier) it follows that Bvj is onto.
On the other hand, since v} is obviously dense, Bv} is also one-one and
therefore an isomorphism. O
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Corollary 4. (i) For any L,M € ODFrm, 3*L = 3*M if and only if
BL=BM.

(ii) For any h: L — M in ODFrm, 3*h is an isomorphism if and only
if Bh is an isomorphism.

Proof. (i) By the proposition, any isomorphism ¢ : 3*L — 3*M determines
the isomorphism (Bv},)(B&p)(Bv;)~! : BL — BM. Conversely, any iso-
morphism ¢ : BL — BM determines the isomorphism 09,(330)(0%)7?! :
3*L — 3*M.

(ii) Any h: L — M as given determines the commuting square

BR3* L — 28" @a3cm
BVE\L \LBV}‘V[
BL BM
Bh

where the downward maps are isomorphisms by the proposition so that
Bh is trivially an isomorphism whenever 3*h is. Conversely, if Bh is an
isomorphism then each of the following is an isomorphism as well

BR3"h, R3"h, 3R3"h, 3"h

the first by the above square, the second by acting J on the first and using
the isomorphisms (g3« and (g3+as, the third then trivially, and the last by
the isomorphism QOL,?)Tg : 3R3*L — 3*L and its version for M. ]

Remark 9. The above (ii) was originally proved in [3].
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