- Alberola, J. M., Del Val, E., Costa, A., Novais, P., & Julian, V. (2018). A genetic algorithm for group formation in elderly communities. AI Communications, 31(5), 409–425.
- Amoozad Mahdiraji, H., Jafarnezhad, A., Mohaghar, A., Moddares Yazdi, M. (2013). Coalition or independence? Determining the appropriate decision for different levels of three- tier supply chain. Journal of Industrial Management Perspective, 3(9), 9-34. (In Persian)
- Ansink, E., Weikard, H. P., & Withagen, C. (2019). International environmental agreements with support. Journal of Environmental Economics and Management, 97, 241–252.
- Aumann, R. J., & Dreze, J. H. (1974). Cooperative games with coalition structures. International Journal of Game Theory, 3(4), 217–237.
- Aumann, R. J., & Myerson, R. B. (2003). Endogenous formation of links between players and of coalitions: An application of the Shapley value. In Networks and Groups, Springer, 207-220.
- Aziz, H., & De Keijzer, B. (2011). Complexity of coalition structure generation. In 10th International Conference on Autonomous Agents and Multiagent Systems, 1, 191–197.
- Bartholdi, J., & Kemahlioglu-Ziya, E. (2005). Using Shapley value to allocate savings in a supply chain. In Supply chain optimization, Springer, 169-208.
- Bitar, E. Y., Baeyens, E., Khargonekar, P., Poolla, K., & Varaiya, P. (2012). Optimal sharing of quantity risk for a coalition of wind power producers facing nodal prices. IEEE American Control Conference, 4438–4445.
- Björklund, A., Husfeldt, T., Koivisto, M., Lin, F., Xu, L., & Zhang, P. (2009). Set partitioning via inclusion- exclusion. SIAM Journal on Computing, 39(2), 546–563.
- Chalkiadakis, G., & Boutilier, C. (2012). Sequentially optimal repeated coalition formation under uncertainty, Autonomous Agents and Multi-Agent Systems, 24(3), 441–484.
- Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., & Jennings, N. R. (2010). Cooperative games with overlapping coalitions. Journal of Artificial Intelligence Research, 39, 179–216.
- Chalkiadakis, G., Elkind, E., & Wooldridge, M. (2011). Computational aspects of cooperative game theory. Synthesis Lectures on Artificial Intelligence and Machine Learning, 5(6), 1–168.
- Chalkiadakis, G., Greco, G., & Markakis, E. (2016). Characteristic function games with restricted agent interactions: Core-stability and coalition structures. Artificial Intelligence, 232, 76–113.
- Cruz, F., Espinosa, A., Moure, J. C., Cerquides, J., Rodriguez-Aguilar, J. A., Svensson, K., & Ramchurn, S. D. (2017). Coalition structure generation problems: optimization and parallelization of the IDP algorithm in multicore systems. Concurrency and Computation: Practice and Experience, 29(5), e3969.
- Dang, V. D., & Jennings, N. R. (2006). Coalition structure generation in task-based settings. In Proceedings of 17th European Conference on Artificial Intelligence, 141, 210–214.
- Dicheva, D., & Dochev, D. (2010). Artificial intelligence: methodology, systems, and applications. Springer.
- Di Mauro, N., Basile, T. M., Ferilli, S., & Esposito, F. (2010). Coalition structure generation with GRASP. In International Conference on Artificial Intelligence: Methodology, Systems, and Applications, 111–120.
- Drechsel, J., & Kimms, A. (2010). Computing core allocations in cooperative games with an application to cooperative procurement. International Journal of Production Economics, 128(1), 310–321.
- Elkind, E., Rahwan, T., Jennings, N. R. (2013). Computational coalition formation. Multiagent systems. MIT press, 329–380.
- Farinelli, A., Bicego, M., Bistaffa, F., & Ramchurn, S. D. (2017). A hierarchical clustering approach to large- scale near-optimal coalition formation with quality guarantees. Engineering Applications of Artificial Intelligence, 59, 170–185.
- Farinelli, A., Bicego, M., Ramchurn, S., & Zucchelli, M. (2013). C-Link: A hierarchical clustering approach to large-scale near-optimal coalition formation. In 23th International Joint Conference on Artificial Intelligence, 106–112.
- Frisk, M., Göthe-Lundgren, M., Jörnsten, K., & Rönnqvist, M., (2010). Cost allocation in collaborative forest transportation. European Journal of Operational Research, 205(2), 448–458.
- Gamson, W. A. (1964). Experimental studies of coalition formation. Advances in Experimental Social Psychology, 1, 81–110.
- Gao, J., Yang, X., & Liu, D. (2017). Uncertain shapley value of coalitional game with application to supply chain alliance. Applied Soft Computing, 56, 551-556.
- Guajardo, M., Rönnqvist, M., Flisberg, P., & Frisk, M. (2018). Collaborative transportation with overlapping coalitions. European Journal of Operational Research, 271(1), 238–249.
- Han, Z., & Poor, H.V. (2009). Coalition games with cooperative transmission: a cure for the curse of boundary nodes in selfish packet-forwarding wireless networks. IEEE Transactions on Communications, 57(1), 203–213.
- Jonnalagadda, A., & Kuppusamy, L. (2018). A cooperative game framework for detecting overlapping communities in social networks. Physica A: Statistical Mechanics and its Applications, 491, 498–515.
- Khalilzadeh, J., & Wang, Y. (2018). The economics of attitudes: A different approach to utility functions of players in tourism marketing coalitional networks. Tourism Management, 65, 14–25.
- Lamarche-Perrin, R., Demazeau, Y., & Vincent, J. M. (2014). A generic algorithmic framework to solve special versions of the set partitioning problem. In the 26th International Conference on Tools with Artificial Intelligence, 891–897.
- Li, C., Sycara, K., & Scheller-Wolf, A. (2010). Combinatorial Coalition Formation for multi-item group-buying with heterogeneous customers. Decision Support Systems, 49(1), 1–13.
- Liao, S. S., Zhang, J.D., Lau, R., & Wu, T. (2014). Coalition formation based on marginal contributions and the Markov process. Decision Support Systems, 57, 355–363.
- Lozano, S., Moreno, P., Adenso-Díaz, B., & Algaba, E. (2013). Cooperative game theory approach to allocating benefits of horizontal cooperation. European Journal of Operational Research, 229(2), 444–452.
- Michalak, T. P., Rahwan, T., Elkind, E., Wooldridge, M., & Jennings, N. R. (2016). A hybrid exact algorithm for complete set partitioning. Artificial Intelligence, 230, 14–50.
- Michalak, T. P., Sroka, J., Rahwan, T., Wooldridge, M., McBurney, P., & Jennings, N. R. (2010). A distributed algorithm for anytime coalition structure generation. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, 1, 1007–1014.
- Nomoto, K., Sakurai, Y., & Yokoo, M. (2017). Coalition structure generation utilizing graphical representation of partition function games. In Proceedings of the 31th AAAI Conference on Artificial Intelligence.
- Rahwan, T., & Jennings, N. R. (2007). An algorithm for distributing coalitional value calculations among cooperating agents. Artificial Intelligence, 171(8–9), 535–567.
- Rahwan, T., & Jennings, N. R. (2008). An improved dynamic programming algorithm for coalition structure generation. In Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, 3, 1417–1420.
- Rahwan, T., Michalak, T., & Jennings, N. R. (2011). Minimum search to establish worst-case guarantees in coalition structure generation. In 22th International Joint Conference on Artificial Intelligence, 338–342.
- Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2012). Anytime coalition structure generation in multi-agent systems with positive or negative externalities. Artificial Intelligence, 186, 95–122.
- Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure generation: A survey. Artificial Intelligence, 229, 139–174.
- Rahwan, T., Ramchurn, S. D., Dang, V. D., Giovannucci, A., & Jennings, N. R. (2007). Anytime optimal coalition struture generation. In the Proceeding of 22th National Conference on Artificial Intelligence, 1184–1190.
- Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.
- Ramchurn, S.D., Polukarov, M., Farinelli, A., Truong, C., & Jennings, N.R. (2010). Coalition formation with spatial and temporal constraints. In Proceedings of AAMAS, 1181–1188.
- Ramos, G. D., Rial, J. C. B., & Bazzan, A. L. (2013). Self-adapting coalition formation among electric vehicles in smart grids. In the 7th International Conference on Self-Adaptive and Self-Organizing Systems, 11–20.
- Ray, D. (2007). A game-theoretic perspective on coalition formation. Oxford University Press.
- Sabar, M., Montreuil, B., & Frayret, J. M. (2009). A multi-agent-based approach for personnel scheduling in assembly centers. Engineering Applications of Artificial Intelligence, 22(7), 1080–1088.
- Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111 (1), 209–238.
- Schulz, A. S., & Uhan, N. A. (2013). Approximating the least core value and least core of cooperative games with supermodular costs. Discrete Optimization, 10 (2), 163–180.
- Sen, S., & Dutta, P. S. (2000). Searching for optimal coalition structures. In Proceedings of the 4th International Conference on Multi Agent Systems, 287–292.
- Service, T., & Adams, J. (2011). Randomized coalition structure generation. Artificial Intelligence, 175 (16–17), 2061–2074.
- Shahriari Nia, A., Olfat, L., Amiri, M., Kazazi, A. (2020). A combined approach to develop a structural model of factors affecting cooperation in the supply chain of the home appliance industry. Journal of Industrial Management Perspective, 10(1), 89-119. (In Persian)
- Sharma, S., & Singh, B. (2019). Overlapping coalition-based resource and power allocation for enhanced performance of underlaying D2D communication. Arabian Journal for Science and Engineering, 44(3), 2379–2388.
- Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial Intelligence, 101(1–2), 165–200.
- Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press.
- Sless, L., Hazon, N., Kraus, S., & Wooldridge, M. (2018). Forming k coalitions and facilitating relationships in social networks. Artificial Intelligence, 259, 217–245.
- Taleizadeh, A., Samadi, R. (2015). Optimization of sale price and advertising cost in a two-level supply chain includes one manufacturer and two retailers. Journal of Industrial Management Perspective, 5(2), 107-127. (In Persian)
- Ueda, S., Hasegawa, T., Hashimoto, N., Ohta, N., Iwasaki, A., & Yokoo, M. (2012). Handling negative value rules in MC-net-based coalition structure generation. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, 12, 795–804.
- Ueda, S., Iwasaki, A., Conitzer, V., Ohta, N., Sakurai, Y., & Yokoo, M. (2018). Coalition structure generation in cooperative games with compact representations. Autonomous Agents and Multi-Agent Systems, 32(4), 503–533.
- Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.
- Xu, S., Xia, C., & Kwak, K. S. (2016). Overlapping coalition formation games based interference coordination for D2D underlaying LTE-A networks. AEU - International Journal of Electronics and Communications, 70(2), 204–209.
- Yeh, D., & Yun Yeh, D. (1986). A dynamic programming approach to the complete set partitioning problem. BIT Computer Science and Numerical Mathematics, 26(4), 467–474.
|