Effect of Co2 on Growth Parameters and Lipid Production in Dunaliella sp. ABRIINW-I1 (Chlorophyceae) Isolated from Urmia Lake (West Azerbaijan, Iran) | ||
Plant, Algae, and Environment | ||
دوره 8، شماره 1، 2024، صفحه 1229-1242 اصل مقاله (543.38 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.48308/jpr.2024.235319.1074 | ||
نویسندگان | ||
Jamileh Panahy Mirzahasanlou* 1؛ Mohammad Amin Hejazi2 | ||
1Gonbad Kavous University | ||
2Agriculture Biotechnology Research institute of Iran | ||
چکیده | ||
Today, using CO2 in microalgae cultures has been increasing for different purposes. Microalgae have the potential to produce high-value products along with CO2 fixation. Dunaliella is a two-flagellate green microalga. The relatively good quality protein and fatty acid, besides lacking an indigestible cell wall make this alga an exceptional food in aquaculture and poultry fostering. In addition, there are many indigenous strains of algae with the advantage of adaptation to the regional climate condition. The main objective of this study was to evaluate the CO2 effect on the growth pattern and biochemical composition of Dunaliella sp. ABRIINW-I1 is native to Urmia Lake. Results showed that using CO2 in the culture not only affects the biomass concentration (1.06 g/l AFDW vs 0.54 g/l in the control experiment) and growth period (reaching the stationary phase in 7 days rather than 14 days in the control experiment); but also influences the chemical composition. It seems that during the cultivation time, the lipid content increased in the cost of carbohydrates (33.1%DW). Fatty acid analysis revealed an optimal combination of saturated and unsaturated acids with the dominance of C16 and C18 fatty acids. It seems that CO2 injection had no significant effect on the type of FA. The nutritional values of the studied strain were validated in this study, particularly when treated with CO2. The results demonstrated that utilizing CO2 in an algal culture could lead to decreased cost and energy requirements. | ||
کلیدواژهها | ||
Biomass؛ Fatty acid؛ Green alga؛ Growth period؛ Photobioreactor | ||
مراجع | ||
Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology. 139: 149-154. Doi:10.1016/j.biortech.2013.04.032.
Al-Adali K, Ahmed E, Kumar P, Ayaril N. (2012). Effect of Salinity, Temperature, Nutrients and CO2 on Growth of Two Species of Microalgae from Red Sea, Saudi Arabia. Journal of King Abdulaziz University: Marine Sciences. 23 (1): 57-73. Doi: 10.4197/Mar. 23-1.5.
Avron M. (1992). Osmoregulation In: Dunaliella: Physiology, Biochemistry, and Biotechnology. (Ed. by M. Avron, A. Ben- Amotz A), CRC Press, Boca Raton. pp. 135–159.
Becker EW. (1994). Microalgae: Biotechnology and microbiology. Cambridge University Press, Cambridge.
Ben-Amotz A and Avron M. (1987). On the mechanism of osmoregulation in Dunaliella In Energetic and Structure of Halophilic Microorganism, Caplan SR and Gizburg M (Ed). Elsevier, Amsterdam, North-Holland. pp. 529–541.
Benhima R, El Arroussi H, Kadmiri IM, El Mernissi N, Bennis I, Smouni AA, Bendaou N. (2018). Nitrate Reductase Inhibition Induces Lipid Enhancement of Dunaliella tertiolecta for Biodiesel Production. The Scientific World Journal. 2018: 1-8. Doi:10.1155/2018/6834725.
Bilanovic D, Andargatchew A, Kroeger T, Shelef G. (2009). Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – Response surface methodology analysis. Energy Conservation and Management. 50: 262-267. Doi:10.1016/j.enconman.2008.09.024.
Castilla Casadiego D, Albis Arrieta A, Angulo Mercado E, Cervera Cahuana S, Baquero Noriega, K, Suárez Escobar A, Moralez Avendano, ED. (2016). Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp. and Chroomonas sp. BioMed Res Int. 2016: 7 pp. Doi:10.1155/2016/5081653.
Cakmak YS, Kaya M, Asan-Ozusaglam M. (2014). Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. EXCLI Journal. 13: 679-690. PMID: 26417292; PMCID: PMC4464408.
Cakmak YS, Zengin G, Guler GO, Aktusek A, Ozparlak H. (2012). Fatty acid composition and ω3/ω6 ratios of muscle lipids of six fish species in Sugla Lake, Turkey. Archives of Biological Sciences. 64: 471-477. Doi: 10.2298/ABS1202471C.
Chavoshi ZZ and Shariati M. (2019). Lipid production in Dunaliella bardawil under autotrophic, heterotrophic, and mixotrophic conditions. Brazilian Journal of Oceanography. 67: 1-8. Doi: 10.1590/s1679-87592019024906709.
Cheng YS, Labavitch J, Vander Gheynst J. (2015). Elevated CO2 concentration impacts the cell wall polysaccharide composition of green microalgae of the genus Chlorella. Letters in Applied Microbiology. 60: 1-7. Doi:10.1111/lam.12320.
De Morais MG and Costa JAV. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology. 129 (3): 439-445. Doi: 10.1016/j.jbiotec.2007.01.009.
De Swaaf ME, Sijtsma L, Pronk JT. (2003). Highcell-density fed-batch cultivation of the docosahexaenoic acid-producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering. 81: 666-672. DOI: 10.1002/bit.10513.
Donmez M. (2009). Determination of fatty acid compositions and cholesterol levels of some freshwater fish living in Porsuk Dam, Turkey. Chemistry of Natural Compounds. 45: 14-7. Doi: 10.1007/s10600-009-9219-z.
Elsey D, Jameson D, Raleigh B, Cooney MJ. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods. 68: 639-642. Doi: 10.1016/j.mimet.2006.11.008.
Guler GO, Aktumsek A, Citil OB, Arslan A, Torlak E. (2007). Seasonal variations on the total fatty acid composition of fillets of zander (Sander lucioperca) in Beysehir Lake (Turkey). Food Chemistry. 103: 1241-1246. DOI: 10.1016/j.foodchem.2006.10.029.
Hejazi M and Wijffels R. (2003). Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomolecules Engineering. 20: 171-175. Doi: 10.1016/S1389-0344(03)00046-7.
Herrero M, Ibanez E, Cifuentes A, Reglero G, Santoyo S. (2006). Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. Journal of Food Protection. 69: 2471-2477. Doi: 10.4315/0362-028X-69.10.2471.
Ho SH, Chen CY, Chang JS. (2010). Scenedesmus obliquus CNW-N is a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology. 101: 8725–8730. DOI:10.1016/j.biortech.2010.06.112.
Hosseieni Tafreshi A and Shariati M. (2009). Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology. 107: 14–35. DOI: 10.1111/j.1365-2672.2009.04153.x.
Hopkins TC, Sullivan Graham EJ, Schuler AJ. (2019). Biomass and lipid productivity of Dunaliella tertiolecta in a produced water-based medium over a range of salinities. Journal of Applied Phycology. 31: 3349-3358. Doi: 10.1007/s10811-019-01836-3.
Hosseinzadeh Gharajeh N, Valizadeh M, Dorani E, Hejazi MA. (2020). Biochemical profiling of three indigenous Dunaliella isolates with a main focus on fatty acid composition toward potential biotechnological application. Biotechnology Reports. 26: 1-9. Doi: 10.1016/j.btre.2020.e00479.
Hu H and Gao K. (2006). Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnology Letters. 28: 987–992. Doi: 10.1007/s10529-006-9026-6.
Kassim MA and Meng TK. (2017). Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Science of the Total Environment. 584-585: 1121-1129. Doi: 10.1016/j.scitotenv.2017.01.172.
Kim W, Park LM, Gim GH, Jeong SH, Kang CM, Kim DJ, Kim SW. (2012). Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and Biosystem Engineering. 35: 10-27. Doi: 10.1007/s00449-011-0612-1.
Knudsen JN, Jensen JN, Vilhelmsen PJ, Biede O. (2009). Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia. 1 (1): 783-790. Doi: 10.1016/j.egypro.2009.01.104.
Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Xavier Malcata F, Van Langenhove H. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology. 28(7): 371-380. Doi: 10.1016/j.tibtech.2010.04.004.
Lam MK, Lee KT, Mohamed AR. (2012). Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control. 10: 456-469. Doi: 10.1016/j.ijggc.2012.07.010.
Lang I, Hodac L, Friedl T, Feussner I. (2011). Fatty acids profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology. 11: 124. Doi: 10.1186/1471-2229-11-124.
Li F-F, Yang Z-H, Zeng R, Yang G, Chang X, Yan J-B, Hou Y-L. (2011). Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Industrial & Engineering Chemistry Research. 50 (10): 6496-6502. Doi: 10.1021/ie200040q.
Lichtenhaler HK and Buschmann C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocol in Food Analytical Chemistry. 1: F4. 3.1-F4. 3.8. Doi: 10.1002/0471142913.faf0403s01.
Ma X, Jiang Z, Lai C. (2016). Significance of increasing n-3 PUFA content in Pork on human health. Critical Reviews in Food Science and Nutrition. 56:1-13. Doi 10.1080/10408398.2013.850059.
Moghimifam R, Niknam V, Ebrahimzadeh H, Hejazi MA. (2020a). CO2 biofixation and fatty acid composition of two Indigenous Dunaliella sp. isolates (ABRIINW‑CH2 and ABRIINW‑SH33) in response to extremely high CO2 levels. Bioprocess and Biosystems Engineering. 43: 1587-1597. Doi: 10.1007/s00449-020-02350-4.
Moghimifam R, Niknam V, Ebrahimzadeh H, Hejazi MA. (2020b). The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33). Journal of Applied Phycology. 32: 175-187. Doi: 10.1007/s10811-019-01914-6.
Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry. 75: 50–59. DOI: 10.1016/j.phytochem.2011.12.007.
Nakanishi A, Aikawa S, Ho S, Chen C, Chang J, Hasunuma T, Kondo A. (2014). Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4. Bioresource Technology. 152: 247-252. Doi: 10.1016/j.biortech.2013.11.009.
Nayak M, Karemore A, Sen R. (2016). Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation, and lipid biosynthesis for biodiesel application. Algal Research. 16: 216-223. Doi: 10.1016/j.algal.2016.03.020.
Qiu R, Gao S, Lopez PA, Ogden KL. (2017). Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research. 28: 192-199. Doi: 10.1016/j.algal.2017.11.004.
Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR. (2014). CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research. 6: 78-85. Doi: 10.1016/j.algal.2014.09.007.
Rasoul-Amini S, Mousavi P, Montazeri-Najafabady N, Mobasher MA, Mousavi SB, Vosough F, Dabbagh F, Ghasemi Y. (2014). Biodiesel Properties of Native Strain of Dunaliella Salina. International Journal of Renewable Energy Research. 4(1): 39-41. Doi: 10.20508/ijrer.v4i1.989.g6241.
Razzak SA, Hossain MM, Lucky RA, Bassi AS, Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Review. 27: 622-653. Doi: 10.1016/j.rser.2013.05.063. Rinanti A, Dewi K, Kardena E, Astuti DI. (2014). Biotechnology Carbon Capture and Storage (CCS) by Mix-culture Green Microalgae to Enhancing Carbon Uptake Rate and Carbon Dioxide Removal Efficiency with Variation Aeration Rates in Closed System Photobioreactor. Journal Teknology. 69 (6): 105-109. Doi: 10.11113/jt.v69.3317.
Rissmani S and Shariati M. (2017). Changes of the total lipid and Omega-3 fatty acid contents in two microalgae Dunaliella salina and Chlorella vulgaris under salt stress. Brazilian Archives of Biology and Technology. 60: 1-11. Doi: 10.1590/1678-4324-2017160555.
Rizwan M, Mujtaba J, Rashid N, Lee K. (2017). Enhancing Lipid Production of Dunaliella tertiolecta by Manipulating the Interactive Effect of Salinity and Nitrogen. Chemistry and Biochemistry Engineering. Q 31 (3): 199–207. Doi: 10.15255/CABEQ.2017.1092.
Saha SK, Kazipet N, Murray P. (2018). The carotenogenic Dunaliella salina CCAP 19/20 produces enhanced levels of carotenoid under specific nutrient limitations. Biomed Research International. 2018: 7532897. 11pp. Doi: 10.1155/2018/7532897.
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Olaf K, Hankmer B. (2009). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research. 1: 20-43. Doi: 10.1007/s12155-008-9008-8.
Shariati M. Lilley RMC. (1994). Loss of intracellular glycerol from Dunaliella by electroporation at constant osmotic pressure: subsequent restoration of glycerol content and associated volume changes. Plant Cell & Environment. 17: 1295–1304. Doi: 10.1111/j.1365-3040.1994.tb00531.x.
Sharifi A, Shah-Hosseini M, Pourmand A, Esfahaninejad M, Haeri-Ardakani O. (2018). The Vanishing of Urmia Lake: A Geolimnological Perspective on the Hydrological Imbalance of the World’s Second Largest Hypersaline Lake In Nooran et al. (eds.), Lake Urmia: A Hypersaline waterbody in a drying climate. The Handbook of Environmental Chemistry. Springer Nature Switzerland AG. Doi: 10.1007/698_2018_359.
Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J. (2010). Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy. 35: 5406-5411. Doi: 10.1016/j.energy.2010.07.013.
Simopoulos AP. (2008). The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular disease and other chronic diseases. Experimental Biology and Medicine. 233: 674-688. Doi: 10.3181/0711-MR-311.
Suzuki T, Matsuo T, Ohtaguchi K, Koide K. (1995). Gas-sparged bioreactors for CO2 fixation by Dunaliella tertiolecta. Journal of Chemical Technology & Biotechnology. 62: 351-358. Doi: 10.1016/j.jcou.2017.09.013.
Takagi M, Karseno Y, Yoshida T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering. 101: 223-226. DOI: 10.1263/jbb.101.223.
Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzajanzadeh M, Shafaroudi SM, Bakhtiari S. (2013). Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research. 2: 258-267. Doi: 10.1016/j.algal.2013.04.003.
Wang B, Li Y, Wu N, Lan CQ. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology. 79:707-718. Doi: 10.1007/s00253-008-1518-y.
White DA, Pagarette A, Rooks P, Ali ST. (2013). The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. Journal of Applied Phycology. 25: 153-165. Doi: 10.1007/s10811-012-9849-6.
Xu Y, Ibrahim IM, Wosu CI, Ben-Amotz A, Harvey PJ. (2018). Potential of New Isolates of Dunaliella Salina for Natural Carotene Production. Biology. 7 (14): 1-18. Doi: 10.3390/biology7010014.
Yang F, Xiang W, Sun X, Wu H, Li T, Long L. (2014). A novel lipid extraction method from wet microalga Picochlorum sp. at room temperature. Marine Drugs. 12: 1258–1270. Doi: 10.3390/md12031258.
Yecong L, Yi-Feng C, Paul C, Min M, Wenguang Z, Blanca M, Zhu J, Ruan R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology. 102: 5138-5144. Doi: 10.1016/j.biortech.2011.01.091.
Yeh K-L, and Chang J-S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implication for biofuel. Biotechnology Journal. 6: 1358-1366. DOI: 10.1002/biot.201000433.
Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M. (2010). Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresource Technology. 101 (1): 71-74. Doi: 10.1016/j.biortech.2009.03.030.
Zeng X, Danquah MK, Dong Chen X, Lu Y. (2011). Microalgae bioengineering from CO2 fixation to biofuel production. Renewable and Sustainable Energy Review. 15: 3252-3260. Doi: 10.1016/j.rser.2011.04.014. | ||
آمار تعداد مشاهده مقاله: 133 تعداد دریافت فایل اصل مقاله: 143 |